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Overview

This course introduces the theory of group representations as the systematic way of
classifying objects on which a group can act. Furthermore, it reveals how this leads
to a deeper understanding of symmetry aspects of physical systems and how one can
use it to simplify mathematical computations.



Prof. K. Sfetsos LECTURE NOTES ON GROUP REPRESENTATION THEORY

Contents

1 Motivation 4

2 Extended review of Group Theory 5

2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Some examples of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Non-Abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 More theorems and definitions . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Generators of a group . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Conjugate elements and class structure . . . . . . . . . . . . . . . . . . . 12

2.5.1 Class decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Distinct elements in a class . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Invariant (or normal) subgroups and factor groups . . . . . . . . . . . . . 15

2.7 Isomorphism and Homomorphism . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Class multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8.1 Product of classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Foundations of Group Theory Representations 22

3.1 Reducible and Irreducible Representations . . . . . . . . . . . . . . . . . 23

3.2 Criteria for (ir)reducibility of a representation; Schur’s lemmas . . . . . . 26

3.3 The great orthogonality theorem . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 The character of a representation . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Decomposition of reducible representations . . . . . . . . . . . . . . . . . 33

3.6 The regular representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 The celebrated theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Character tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



Prof. K. Sfetsos LECTURE NOTES ON GROUP REPRESENTATION THEORY

3.8.1 The rules for constructing character tables . . . . . . . . . . . . . 36

3.8.2 Example of character table construction . . . . . . . . . . . . . . . 37

4 Direct product groups 40

4.1 The direct (or Kronecker) product of matrices . . . . . . . . . . . . . . . . 41

4.2 Direct product representations of different groups . . . . . . . . . . . . . 43

4.2.1 Example of character table for direct product representations . . 44

4.3 Direct product representations within the same group . . . . . . . . . . . 45

5 Applications of representation theory 47

5.1 Transformation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Constructing representations . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Basis functions for irreducible representations . . . . . . . . . . . . . . . 50

5.3.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Representations of Abelian groups . . . . . . . . . . . . . . . . . . . . . . 55

5.4.1 Cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.2 Bloch’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.3 The 2-dim rotation group SO(2) . . . . . . . . . . . . . . . . . . . 56

5.4.4 The Orthogonal group O(2) . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 The 3-dim rotation group 62

6.1 General rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Group generators; reps in terms of differential operators . . . . . . . . . 63

6.3 Elements of Lie-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 SU(2): The group of 2× 2 unitary matrices 68

7.1 Homomorphism between SO(3) with SU(2) . . . . . . . . . . . . . . . . 70

7.2 Representations of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 The characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3.1 Character decomposition . . . . . . . . . . . . . . . . . . . . . . . 76

7.3.2 The great orthogonality theorem for SU(2) irreps . . . . . . . . . 77

2



Prof. K. Sfetsos LECTURE NOTES ON GROUP REPRESENTATION THEORY

7.4 The Wigner or Clebsch–Gordan coefficients . . . . . . . . . . . . . . . . . 78

7.4.1 Wigner 3− j symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Tensors operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.1 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.3 General tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.6 The Wigner–Eckart theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.6.1 Example of tensor decomposition . . . . . . . . . . . . . . . . . . 86

3



Prof. K. Sfetsos LECTURE NOTES ON GROUP REPRESENTATION THEORY

1 Motivation

The common theme of many branches of Mathematical and Physical sciences is sym-

metry. In this module we will learn the principles and mathematical techniques to

exploit symmetry properties of a system. There are two major reasons for doing so: (i)

from a practical view point, reduce significantly or organize better the computational

tasks involved and (ii) at a more conceptual level, provide a fundamental starting

point or classification scheme for a deeper understanding of the system that may lead

to further generalizations and advancements.

What we need is a formalism which will tell us how to extract the maximum informa-

tion from symmetries systematically and avoiding as much as possible the complexi-

ties of the problem at hand. Such a formalism has been developed and referred to as

Group Theory. This module introduces the theory of Group Representations as the sys-

tematic way of classifying objects on which a group can act. Furthermore, it reveals

how this leads to a deeper understanding of symmetry aspects of physical systems

that how one can use it to simplify mathematical computations.

At the end of the module a student should:

• Have a firm understanding of the concepts, theorems and techniques of group rep-

resentation theory.

• Have a clear understanding how to construct irreducible representations of groups.

• Be able to explicitly apply the above to small order groups.

•Have a true appreciation of the importance of the knowledge that they have acquired

and its wide range of applications in mathematical and physical sciences.

Abbreviations

• l.h.s. (r.h.s.) : left (right) hand side

• w.r.t. : with respect to

• i.e. : "in a sense" or "in other words".

• n-dim : n-dimensional.

• rep(s) : representation(s)

• irrep(s) : irreducible representation(s)
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2 Extended review of Group Theory

To make these notes self-contained we will provide in this section a rather detailed

and extended review of group theory with emphasis on discrete groups.

2.1 Basic definitions

By a group G we mean a set of objects or operators (called the Group Elements) (a, b, . . . )

which possess the following properties:

1. A composition law or "multiplication"

A · B = AB (for simplicity) , A, B ∈ G , (2.1)

which is associative

(AB)C = A(BC) , ∀ A, B, C ∈ G (2.2)

and closed

AB = C , C ∈ G , ∀ A, B ∈ G . (2.3)

2. There is an element e called the identity or unit element, such that

EA = AE = A , ∀A ∈ G . (2.4)

3. Every element A ∈ G possesses an inverse A−1 such that

A−1A = AA−1 = E , ∀A ∈ G . (2.5)

Remarks:

• This compositions law need not be commutative, that is, generically, AB 6= BA. A

group with a commutative composition law is called Abelian. In all other cases is

called non-Abelian.

• A group contains only one unit element (Exercise).

• The inverse of the inverse of A ∈ G is A itself, that is (A−1)−1 = A (Exercise).
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• For each A ∈ G there is a unique inverse (Exercise).

• A group is called finite ( infinite) if the number of its elements is finite (infinite). For

finite groups the number of elements is called order of the group.

2.2 Some examples of groups

2.2.1 Abelian groups

1. The set of all integers constitutes an Abelian infinite group, if the composition law

is the usual addition. The unit element is zero and the inverse of an integer A is −A.

2. Similar to the above example, the set of vectors of a linear n-dim space form an

infinite Abelian group if the composition law is the usual addition of vectors.

3. The set of all rational numbers of the form
p
q

excluding zero constitutes an Abelian

infinite group, if the composition law is the usual multiplication. The unit element is

one and the inverse of
p
q

is just
q
p

. Unlike, the negative rational numbers, the positive

ones form a group by themselves.

2.2.2 Non-Abelian groups

1. The set of all non-singular n × n matrices over C comprises the General Linear

Group GL(n) under the usual multiplication of matrices, with the unit element the

identity matrix. The group is obviously non-Abelian and infinite dimensional. The

elements of GL(n) depend on 2n2 continuous real parameters and therefore the group

is called continuous.

2. The covering operations of a symmetric object form a group. A covering operation

is a rotation, a reflection or an inversion that sends the object into itself, that is to a

form that is indistinguishable optically from the original one. An important example

of a finite covering group is the covering group of the equilateral triangle (D3), which

will be used extensively in these notes to illustrate various points.
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A

B C

y

x

Figure 1: Equilateral triangle
and its symmetry axes.

E : Identity operation

A, B, C : Rotations by π about the axes shown

D : Rotation by − 2π

3
in z axis(clockwise)

F : Rotation by +
2π

3
in z axis(anti− clockwise)

(z points outwards)

By inspection one constructs the following Group Multiplication Table (column opera-

tion performed first)
E A B C D F

E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D .

(2.6)

For this group we will use the notation D3.

Remarks:

• The group is non-Abelian, since, for instance, AB = D 6= BA = F. Its order h = 6.

• The covering operations may be represented as 2-dim matrices

E =

(
1 0
0 1

)
,

A =

(
1 0
0 −1

)
, B =

(
−1

2

√
3

2√
3

2
1
2

)
, C =

(
−1

2 −
√

3
2

−
√

3
2

1
2

)
, (2.7)

D =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
, F =

(
−1

2 −
√

3
2√

3
2 −1

2

)
.

These matrices act on the 2-dim vector

(
x
y

)
. One can readily verify that indeed they

reproduce the table (2.6) (Exercise).

•One may view this group on its own and simply say that it isomorphic to the covering
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group of the equilateral triangle.

2.3 More theorems and definitions

Rearrangement Theorem: In a group multiplication table each column or row con-

tains each group element once and only once. This implies that if

G = {X1, X2, . . . , Xh} , (2.8)

then the set

GXk = {X1Xk, X2Xk, . . . , XhXk} = G , ∀ Xk ∈ G . (2.9)

2.3.1 Subgroups

Any subset of group elements which itself forms a group G with the same composition

law is called a subgroup H of G. The remaining elements of G cannot form a group

since they do not contain the identity.

Any group has at least two subgroups, the group itself and the group consisting only

of the identity element. Such subgroups are called improper subgroups or trivial sub-

groups. All other subgroups are called proper subgroups.

The covering group of the equilateral triangle has four proper subgroups: {E, A},
{E, B}, {E, C} and {E, D, F}. The first three are covering groups of three isosceles

triangles.

Exercise: Compute the multiplication table of the covering group of a square (D4)

using the following table and notation:

A

B

C D

Figure 2: Square and its symme-
try axes.

E : Identity operation

A, B, C, D : Rotations about axis A, B, C, D

F, G, H : Clockwise rotations by
π

2
, π,

3π

2
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Find its proper subgroups and indicate the ones that correspond to covering groups

of rectangles.

2.3.2 Cyclic groups

Consider a finite group G. For any X ∈ G consider the sequence

E , Xk , k = 1, 2, . . . . (2.10)

By closure all element in this sequence belong in G and therefore there is a certain

power, say Xn for which Xn = Xm, with m < n. Indeed, unless Xn = E, we have

that the group element Xn−1 = Xm−1 would have appeared earlier in the sequence,

in contrast with our hypothesis. Hence, the elements that appear in the sequence are

distinct up to order n− 1. The integer n is called the order of the element X since it is

the smallest integer for which Xn = E. The sequence

E , X , X2 , . . . , Xn−1 . (2.11)

is called the period of the element X and forms a group (note that X−1 = Xn−1).

This procedure might not exhaust all elements of the group G we started with.

Definition: A group formed entirely of powers of a single element is called cyclic.

Remarks:

• Since XnXm = XmXn, all cyclic groups are Abelian.

• The covering group of the equilateral triangle has three cyclic subgroups of order 2

and one of order 3 (Exercise).

2.3.3 Generators of a group

Definition: The elements Xi, i = 1, 2, . . . , k of a group G are called generators or gen-

erating elements if every X ∈ G can be expressed as a finite product of positive and

negative powers of the Xi’s. The set of relations

gm(X1, X2, . . . , Xk) = E , m = 1, 2, . . . , (2.12)

9
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which are sufficient to determine the entire multiplication table of G are called defining

relations or generating relations of G.

Remarks:

• The sets of generators and defining relations are by no means unique.

• There is always a minimum set of generators without which one cannot generate the

group. It is often practical to use an overdetermined set instead of the minimal one.

Exercise: For the covering group of the equilateral triangle a set of generators is

{A, D} and the corresponding defining relations are

A2 = E , D3 = E , ADAD−2 = E . (2.13)

2.4 Cosets

Let H = {S1 = E, S2, . . . , Sg} be a subgroup of order g of a larger group G = {X1 =

E, X2, . . . , Xh} of order h.

Definition: We call the set of g elements

HXk = {S1Xk, S2Xk, . . . , SgXk} , Xk /∈ H , (2.14)

the right coset of H with respect to Xk. There is similar definition for the left coset.

Remarks:

• The coset is not a group itself since it does not contain the identity (Exercise).

• The coset HXk has no common elements with H (Exercise).

• The element Xk is called a coset representative and is by no means special. Any ele-

ment of the coset may serve as such a representative.

Proof: If we choose an element A ∈ HXk, then this is of the form A = SmXk. Then

the coset HA = HSmXk = HXk is the same as the original one by the rearrangement

theorem.

• The right (or the left) cosets of the subgroup H are either identical or have no ele-

ments in common.

Proof: Consider the two right cosets HXm and HXn. Assuming that they have one

element in common we have a relation of the form SrXm = SsXn, which implies that

10
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XmX−1
n ∈ H. Then by the rearrangement theorem HXmX−1

n = H or HXm = HXn that

is the two cosets are completely identical. A similar proof holds for left cosets as well.

• The order g of the subgroup H is an integral divisor of the order h of the group G.

The integer

` =
h
g

, (2.15)

is called the index of the subgroup H.

Proof: There are h− g group elements that do not belong to H which we denote by

Xg+1, Xg+2, . . . , Xh. Hence we may construct the following sets of g elements each

H , HXg+1 , HXg+2 , . . . , HXh . (2.16)

Due to the above, no coset has any element in common with H and also the cosets

themselves are either identical or have no common elements as well. Hence, after

keeping only the distinct cosets we have the sets

HX1 , HX2 , . . . , HX` , X1 ≡ E , (2.17)

where ` is a positive integer. Each of these sets has g elements none of them in com-

mon. Hence an element of G should appear in the above sequence only once. There-

fore h = `g.

• In this way we see that we can expand the group G in terms of the right cosets of

any subgroup H as

G =
⋃̀
k=1

HXk , X1 ≡ E , (2.18)

with a similar expression for the expansion in terms of the left coset.

• Finite groups whose order h is a prime integer are cyclic Abelian groups.

Proof: If this was not the case the period of some element would have been a subgroup

whose order is a divisor of a prime number. Therefore for each prime there is only one

distinct group, i.e. only one distinct multiplication table.

Exercise: For the covering group of the equilateral triangle choose the subgroup H =

{E, A}, construct all the right and left cosets and verify the above statements. Repeat

the exercise for the square and choose the subgroup H appropriately.
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2.5 Conjugate elements and class structure

Definition: Let A, B ∈ G. They are said to be conjugate elements if there is X ∈ G such

that B = XAX−1.

Remarks:

• One easily shows that if two elements are conjugate to a third element, then they are

conjugate to each other as well (Exercise).

• All mutually conjugate elements can be collected into a class. The class that includes

an element Ai is formed by considering the sequence Xk AiX−1
k , k = 1, 2, . . . , h. Of

course some elements may occur more than once in this sequence.

• The unit element forms a class on its own. This class is the only one that is also a

subgroup of G (Exercise).

• All elements of a given class have the same period. Indeed, if An = E we have that

(XAX−1)n = · · · = XAnX−1 = E.

• In Abelian groups every element is a class by itself.

2.5.1 Class decomposition

The various distinct classes of conjugate elements are mutually exclusive.

Proof: Assuming two classes A and B have one element in common then for some

X, Y ∈ G we have that

XArX−1 = YBsY−1 =⇒ CArC−1 = ZBsZ−1 , Z = CX−1Y , ∀ C ∈ G . (2.19)

By ranging over all elements C ∈ G, the l.h.s. generates the entire class A. Similarly

by the rearrangement theorem Z runs over all elements of G and generates the entire

class B. Hence, the two classes must be identical.

Hence, we have the decomposition of G into classes as

G =
k⋃

a=1

Ca . (2.20)

12
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Consequently, if ha is the number of elements in the class Ca, we have that

h =
k

∑
a=1

ha . (2.21)

Exercise: For the equilateral triangle show that the class decomposition leads to

D3 = C1 ∪ C2 ∪ C3 , C1 = {E} , C2 = {A, B, C} , C3 = {D, F} . (2.22)

Exercise: Repeat the previous exercise for D4, the symmetry group of the square and

show that D4 = ∪5
a=1Ca, where

C1 = {E} , C2 = {A, B} , C3 = {C, D} , C4 = {G} , C5 = {F, H} . (2.23)

2.5.2 Distinct elements in a class

How many distinct elements are there in the class generated by A ∈ G? To answer

this question we define the normalizer:

Definition: The set of elements of G that commute with a fixed element A ∈ G is

called the normalizer of A.1 Remarks:

• The elements of the normalizer form a subgroup NA of G.

Proof: Let Ni ∈ NA, i = 1, 2 arbitrary elements obeying [A, Ni] = 0.2 We easily

establish that

[A, N1N2] = N1[A, N2] + [A, N1]N2 = 0 , [A, N−1
i ] = 0 , i = 1, 2 . (2.28)

1More generally let H ⊆ G. Then the normalizer of H in G is

NG(H) = {g ∈ G | Hg = gH} , (2.24)

Also the centralizer is
CG(H) = {g ∈ G | hg = gh , ∀ h ∈ H} , (2.25)

Obviously, CG(H) ⊆ NG(H). In our case we use the term normalizer and centralizer indistinguishably
since the group element A is fixed, i.e. the subgroup H consists of only one element, that is H = {A}.

2We will use the notation
[A, B] = AB− BA , (2.26)

for any two operators A and B. This is commonly known as the commutator of A and B. Two basic
properties are

[A, B] = −[B, A] , [A, BC] = B[A, C] + [A, B]C . (2.27)

13
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Since, also [A, E] = 0 and by definition associativity is obeyed, the assertion is proved.

•We may expand G into left cosets with respect to NA as

G =
`A⋃

k=1

XkNA , X1 ≡ E , (2.29)

where `A = h/nA is the index of NA and nA its order. A typical element of XkNA is

XkN, where N ∈ NA and obeys (XkN)A(XkN)−1 = Xk AX−1
k , independent of which

element N is chosen. Hence, all elements belonging to the same coset transform A

in the same manner. Moreover, if we pick up two elements of different cosets, i.e.

Xi 6= Xj, we have that (XiNA)A(XiNA)
−1 6= (XjNA)A(XjNA)

−1.

Proof: Assume instead equality. Then easily [A, X−1
i Xj] = 0, which means that

X−1
i Xj ∈ NA. Then by the rearrangement theorem X−1

i XjNA = NA or XiNA = XjNA,

which contradicts our hypothesis.

Therefore elements of two different cosets of the normalizer NA lead to different trans-

formations. Hence, the number of distinct conjugates of A is the index `A = h/nA of

the normalizer of A. These elements are obtained by applying the transformation

XAX−1, ∀ X ∈ G, but we have just demonstrated that only a number of them, equal

to the index of the normalized `A, are the distinct ones. They can be written as

Xi AX−1
i , i = 1, 2, . . . , `A . (2.30)

Exercise: For the covering group of the equilateral triangle show that the normalizers

corresponding to the various elements are

NE = {E, A, B, C, D, F} , nE = 6 , `E = 1 ,

NA = {E, A} , nA = 2 , `A = 3 ,

NB = {E, B} , nB = 2 , `B = 3 , (2.31)

NC = {E, C} , nC = 2 , `C = 3 ,

ND = NF = {E, D, F} , nD = nF = 3 , `D = `F = 2 .

and verify the above, in particular (2.22).

Exercise: Repeat the previous exercise for the symmetry group of the square.

14
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2.6 Invariant (or normal) subgroups and factor groups

Starting with a subgroup H and its elements Si, i = 1, 2, . . . , g, one may construct the

elements XSiX−1 with X any element of G. It is easily seen that they form a subgroup

called the conjugate subgroup of H in G (Exercise).

By choosing different elements X ∈ G we obtain different conjugate subgroups, sym-

bolically XHX−1.3

Definition(s): If XHX−1 = H, ∀ X ∈ G, we call H an invariant subgroup or normal

subgroup of G. By writing the above relation as XH = HX, we have an equivalent

definition of an invariant subgroup as that for which the right and left cosets formed

with any element X ∈ G, coincide.

Remarks:

• From the above if S1 ∈ H and H is an invariant subgroup of G then all elements

XS1X−1 ∈ H. Hence, a subgroup H of G is invariant if and only if it contains complete

classes of G, that is it contains either all or none of the members of the class.

• The identity element and the whole group G are trivial invariant subgroups of G.

Definition(s): A group that contains no proper invariant subgroups is said to be simple

and semisimple if none of its invariant subgroups are Abelian.

• All subgroups H of index ` = 2 are invariant subgroups.

Proof: By definition we have the decomposition in terms of right and left cosets

G = H ∪ HX = H ∪ XH =⇒ H = XHX−1 , (2.32)

where the last step follows from the fact that a subgroup and a coset have no elements

in common.

The above can be discussed more compactly by introducing the concept of a complex,

which is a collection of group elements disregarding order, K = {K1, K2, . . . }. A com-

plex maybe multiplied by a group element or by another complex, i.e.

KX = {K1X, K2X, . . . } , KR = {K1R1, K1R2, . . . , K2R1, K2R2, . . . } . (2.33)

Elements are considered to be included once, regardless on how often they are gener-

3For instance if for the group D3 we take H = {E, A} and X = B we have that XHX−1 = {E, C}.
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ated. In this way, a subgroup H is defined by the property of closure, i.e. HH = H.

Also, if H is an invariant subgroup then XHX−1 = H, ∀ X ∈ G.

We have seen that there is a finite number ` − 1 of distinct right cosets Ki for any

subgroup H of index `. Each may be denoted as a complex and clearly we have that

Ki = HKi. If in addition H is an invariant subgroup then we have Ki = HKi = KiH.

Also HKi = HKj, if Ki and Kj are members of the same right coset since the order in

which the elements appear in the complex are immaterial. Therefore we have:

Definition: Consider a group G and an invariant subgroup H. This and the set of all

`− 1 distinct cosets maybe regarded as members of a smaller group of order ` = h/g.

This is called the factor group of G with respect to the invariant subgroup H and is

denoted by G/H. In this group the identity is played by the invariant subgroup H

itself. To see that note

HKi = H(HKi) = (HH)Ki = HKi = Ki . (2.34)

Group multiplication also works as in

KiKj = (HKi)(HKj) = Ki(HH)Kj = KiHKj = H(KiKj) = (KiKj) , (2.35)

where the last expression refers to the complex associated with the product KiKj as a

coset representative.

Exercise: For the covering group of the equilateral triangle D3 show that the only

invariant proper subgroup is H = {E, D, F} and thatK = {A, B, C} is the only distinct

coset. Using the multiplication table (2.6) verify the multiplication table of the factor

group {H,K}
D3/H H K

H H K
K K H .

(2.36)

Remark:

It is natural to ask what would have happened if H was not an invariant subgroup.

Would this and the corresponding cosets form a group? The answer is emphatically

no. As a counter example consider the case of the group D3 and its non-invariant

subgroup H = {E, A}. Then one easily find that there are two distinct right cosets

given by K1 = HB = HD = {B, D} and K2 = HC = HF = {C, F}. Then one easily

16
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finds that K1K1 = H
⋃K2. Hence, it is clear that the {H,K1,K2} do not form a group.

Exercise: For D4, the symmetry group of the square show that the invariant subgroups

are (for the action of the various elements see fig. 2)

H1 = {E, G} , H2 = {E, F, G, H} , H3 = {E, G, A, B} , H4 = {E, G, C, D} (2.37)

and that the corresponding cosets are

Cosets of H1 : K1 = {A, B} , K2 = {C, D} , K3 = {F, H} ,

Cosets of H2 : K = {A, B, C, D} ,

Cosets of H3 : K = {C, D, F, H} , (2.38)

Cosets of H4 : K = {A, B, F, H} .

(What are the other proper subgroups?) Then show that the multiplication table of

the factor group D4/Hi for each i = 2, 3, 4 is that in (2.36) and that for D4/H1 is the

following
D4/H1 H1 K1 K2 K3

H1 H1 K1 K2 K3

K1 K1 H1 K3 K2

K2 K2 K3 H1 K1

K3 K3 K2 K1 H1 .

(2.39)

The multiplication can be represented as K1K2 = K2K1 = K3 and cyclic in 1, 2, 3.

2.7 Isomorphism and Homomorphism

Definition: Two groups having the same multiplication table are said to be isomorphic.

Definition: Two groups G and G′ are said to be homomorphic if to each element of

G′ corresponds one and only one element of G and to each element of G correspond

several elements of G′ and these correspondences are preserved under multiplication.

Remarks:

• Let G = {A, B, C, . . . }. G′ = {A′1, A′2, . . . , B′1, B′2, . . . , C′1, C′2, . . . } and the one-to-
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many correspondence between elements

A ↔ A′1, A′2, . . . ,

B ↔ B′1, B′2, . . . , (2.40)

C ↔ C′1, C′2, . . . .

If AB = C, then the product of any of the A′i’s with any of the B′j’s will belong to the

set of the Ck’s.

• A homomorphism becomes an isomorphism if the correspondence is one to one.

• The collection of elements in G′ that correspond to the identity in G is an invariant

subgroup of G′.

Proof: Let the set H′ = {E′i} ∈ G′ correspond to E. By definition EE = E implies

that this set is closed under multiplication. Let the identity E′ ∈ G′ correspond to an

element X ∈ G. Noting that E′X′k = X′k = X′kE′ corresponds by definition to XX′ =

X′ = X′X, which by definition means that X = E, the identity element in G, one

proves that the identity E′ ∈ H′. Let the inverse E′i
−1 correspond to an element Y ∈ G.

Then E′i
−1E′i = E′ corresponds to YE = E, which implies that Y = E. Hence, E′i

−1 ∈
H′, ∀ i as well. By definition the multiplication in H′ is associative and therefore H′ is

a subgroup of G. For a X ∈ G, the relation XEX−1 = E implies that X′mE′i(X′k)
−1 ∈ H′.

Taking m = k and since X runs over all elements in G this implies that in X′kE′i(X′k)
−1 ∈

H′ for an arbitrary element X′k ∈ G′. Hence we prove that H′ is an invariant subgroup

of G′.

Let G and G′ homomorphic groups and H′ the set of elements in G′ corresponding to

the identity in G. Then, the following hold:

• The factor group G′/H′ is isomorphic with the group G (the notation as above).

Proof:

a) First note that all the elements A′1, A′2, . . . of G′ corresponding to the same element

A ∈ G belong to the same coset of G′ w.r.t. H′. To see that note that A−1A = E

corresponds to a relation of the form A′−1
i A′j = E′k, where E′k ∈ H′. This implies that

A′j = A′iE
′
k which for the coset means that A′jH

′ = A′iEkH′ = A′kH′ (by the rearrange-

ment theorem). Since as we have seen above the identity element E′ of G′ belongs to

H′ we have that A′i and A′j belong to the same coset.

18
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b) Next we prove that, if two elements of G′ lie in the same coset w.r.t. H′, then they

correspond to the same group element in G. Indeed, let A′i and A′j corresponding to

A and B in the group elements of G. If they lie in the same coset w.r.t. H′ it means

that A′j = A′iE
′
k for some E′k ∈ H′. From the homomorphism this implies that A = BE,

or A = B, i.e. they correspond to the same element in G. Hence, combined with a)

there is a one-to-one correspondence between the elements of G and the elements of

the factor group G′/H′.

c) Now we show that the product of two elements of the factor group G′/H′ corre-

sponds to the product of the corresponding elements in G. Indeed, if A′H′B′H′ =

C′H′ then A′E′i B
′E′j = C′E′k corresponds to AEBE = CE or AB = C. Hence G′/H′

is isomorphic to G. The order of the latter smaller group is an integral divisor of the

order of the larger group G′.

• A group is homomorphic to any one of its factor groups.

Proof: The invariant subgroup H corresponds to all elements of H. The coset Ki =

HKi corresponds to all elements of the coset Ki. Thus if H is of order g there is a g-

to-one correspondence between the original group elements and the elements of the

factor group.

Exercise: Consider as the group G = {E, P} with P2 = E and as a group G′ the

covering group of the equilateral triangle whose multiplication table is in (2.6). Make

the correspondences

E ↔ E, D, F , P ↔ A, B, C (2.41)

and verify the above.

Exercise: Formulate an analog of the previous exercise for the case of the group D4.

2.8 Class multiplication

Class multiplication is nothing but the standard multiplication of complexes with the

added feature that we keep track of the number of times each element appears in the

product. Let the class Ca have elements {X(a)
k }, with k = 1, 2, . . . , ha.

Remarks:
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• If Ca is a conjugacy class of a group G and X any element of G, then

XCaX−1 = Ca . (2.42)

Proof: To show that the two sets are equal first note that each element produced in the

l.h.s. is contained, by definition, in Ca. Also, all the elements produced on the left are

different since XX(a)
k X−1 = XX(a)

l X−1, only if X(a)
k = X(a)

l . Hence, the two sets are

identical.

• Any collection C for which

XCX−1 = C , ∀ X ∈ G , (2.43)

is comprised wholly of complete classes.

Proof: First note that the number of elements on each side is the same. Next, assume

that

C = C1 ∪ C2 ∪ · · · ∪ Cm ∪R , (2.44)

whereR is a non-empty set of elements that do not constitute a complete class. Since,

XCaX−1 = Ca, for a = 1, 2, . . . , m, then we just have to show that XRX−1 = R,

∀ X ∈ G. Again, note that the number of elements on each side is the same. IfRk ∈ R,

then applying XRkX−1, ∀ X ∈ G by definition generates the whole class that contains

Rk, which contradicts the assumption thatR is not an empty set.

2.8.1 Product of classes

Using (2.42) we have that

CaCb = X−1CaXX−1CbX = X−1CaCbX , ∀ X ∈ G . (2.45)

According to the above theorem CaCb consists of complete classes. Therefore

CaCb =
k⋃

c=1

cabcCc , (2.46)

where cabc is an integer which tells how many times the complete class Cc appears in

the product of Ca with Cb.
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Remarks:

• If Ca and Cb are two conjugacy classes then

CaCb = CbCa ⇐⇒ cabc = cbac . (2.47)

Proof: In CaX = XCa, we choose for X = X(b)
k ∈ Cb and then we sum over k, that is

over all members of the class Cb

hb

∑
k=1

X(b)
k Ca = Ca

hb

∑
k=1

X(b)
k =⇒ CbCa = CaCb . (2.48)

Exercise: For the covering group of the equilateral triangle show that the class product

leads to the table
D3 C1 C2 C3

C1 C1 C2 C3

C2 C2 3C1 + 3C3 2C2

C3 C3 2C2 2C1 + C3 ,

(2.49)

where the classes Ca, a = 1, 2, 3 are given by (2.22) and are labeled in the indicated

order.

• Let’s denote by Ca′ the collection of group elements which are the inverses of those

appearing in the class Ca. One easily sees that it is itself a class. Indeed, Ca is generated

by X−1AX, ∀ X ∈ G. Then the inverse elements (X−1AX)−1 = X−1A−1X generate

Ca′ which by a definition is then a class. Note then that

cab′1 = haδab , (2.50)

since the identity can only appear as many times as the numbers of elements in the

class. Note also that Ca′ may coincide with Ca as is the case for the group D3.

Exercise: Construct the analogous table for the symmetry group of the square D4.
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3 Foundations of Group Theory Representations

Now that we have reviewed the general structure of group theory we turn our atten-

tion to the objects that the group elements may act on as well as on how this happens.

This is the subject of the theory of group representations. This theory provides a frame-

work for the specific techniques which are used to exploit symmetries of the various

objects and systems of interest.

A rep4 of an abstract group is any group composed of concrete mathematical entities

which is homomorphic to the original group. For our purposes we restrict attention

mostly to square non-singular matrices with matrix multiplication as the group com-

position law.

We associate to each group element X ∈ G a matrix Γ(X). The associated set of matri-

ces obeys the multiplication table of G. To the identity E we associate the unit matrix,

i.e. Γ(E) = I, where Iij = δij.5

Remarks:

• The dimensionality of the matrices in the representation is called the dimensionality

of the representation.

• If each of the matrices in {Γ(X)} is different, the two groups, i.e. G and its rep, are

isomorphic and the rep is said to be true or faithful.

• According to the results of subsection 2.7, if several group elements correspond to a

single matrix, all of the elements corresponding to the identity matrix form an invari-

ant subgroup of the full group. Also. the elements corresponding to each of the other

matrices form the distinct cosets of the invariant subgroup and the matrices form a

faithful rep of the factor group of the invariant subgroup.

• An example of a faithful rep of dimension 2 for the covering group of the equilateral

triangle was given in (2.7). Another rep is obtained by taking the determinant of

these matrices since det(Γ(A)Γ(B)) = det(Γ(A))det(Γ(B)). However, this rep is not

faithful. From (2.7) we see that all the determinants equal ±1, whereas the group has

4It is customary for convenience to use the abbreviation rep for representation.
5Recall the definition

δij =

{
1 , if i = j
0 , otherwise . (3.1)
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six elements.

• Once we have a matrix rep of a group we may generate an infinite number of other

reps by just letting all matrices undergo the same similarity transformation, i.e. the set

of matrices {Γ′(A)} with Γ′(A) = S−1Γ(A)S, satisfies the same group multiplication

table as the set {Γ(A)}. Such reps are deemed to be equivalent.

Exercise: The matrices Xk, k = 1, . . . 6 written explicitly in (2.7) provide a rep of the

group D3 since they reproduce the table (2.6). However, they do not produce the

rotations as depicted in Fig. 1. Show that the set of matrices

X′k = S−1XkS , S =

(
0 −i
i 0

)
. (3.2)

are needed producing the rotations of Fig. 1.

3.1 Reducible and Irreducible Representations

We can take two or more reps and construct from them a new rep by combining them

into larger matrices. A typical example is

Γ(A) =

(
Γ(1)(A) 0

0 Γ(2)(A)

)
, (3.3)

where Γ(1)(A) and Γ(2)(A) are reps, not necessarily of equal dimensionality.

Definition: Such an artificially enlarged rep is said to be reducible.

Remarks:

• The reducibility may be concealed by carrying out a similarity transformation on the

larger matrix which yields an equivalent rep but not in a diagonal form.

• A criterion for reducibility is that to be possible to reduce all rep matrices in a block

diagonal form with the same block structure for all matrices and with the same sim-

ilarity transformation. If this cannot be done then the rep is said to be irreducible.6

Hence, studying and classifying all irreps of a group is important since these are the

building blocks of any other rep.

• A more general definition of reducible rep is that a rep is reducible if all the matrices

6It is customary for convenience to use the abbreviation irrep for an irreducible representation.
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can be put in the form

Γ(A) =

(
Γ(1)(A) Q(A)

0 Γ(2)(A)

)
, (3.4)

where Γ(i)(A), i = 1, 2 are ni × ni matrices, while Q(A) is a n1 × n2 matrix. It is easy

to verify that the Γ(i)(A)’s also provide reps for the group (Exercise).

• For unitary reps the matrix Q(A) = 0.

Proof: A unitary matrix M obeys M−1 = M†.7 We have that

Γ(A−1) = Γ(A)−1 = Γ(A)† =

(
Γ(1)(A)† 0
Q(A)† Γ(2)(A)†

)
, (3.5)

Since all matrices are required to have the form (3.4) we conclude that Q(A) = 0.

• The reducibility of the matrices {Γ(A)} as in (3.4) can be expressed in the form8

Γ(A) = Γ(1)(A)⊕ Γ(2)(A) . (3.6)

In general, the matrices of a reducible rep will be written in the form

Γ(A) = a1Γ(1)(A)⊕ a2Γ(2)(A) + · · · =
r

∑
k=1
⊕akΓ(k)(A) , (3.7)

where the positive integers ak indicate the times that Γ(k)(A) appears in Γ(A).

In the following we will consider, unless stated otherwise, reps provided by unitary

matrices, the reason being:

• Any rep by square non-singular matrices is equivalent through a similarity transfor-

mation to a rep of unitary matrices.

Proof: Construct the Hermitian matrix9

H =
h

∑
i=1

Ai A†
i =⇒ Hmn =

h

∑
i=1

∑
k
(Ai)mk(A∗i )nk , (3.8)

where the range of the indices m and n depends on the dimensionality of the rep. Any

7For a matrix M, its Hermitian conjugate is M† = (MT)∗ and for the matrix elements (M†)ij = M∗ji.
8Note that (3.4) is not precisely of the form of direct sum for matrices, in which case Q(A) = 0.
9 For notational convenience in this proof we will denote the rep matrices corresponding to an

abstract group element Ai by the same symbol.
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Hermitian matrix can be diagonalized by means of a unitary transformation with a

matrix U. Denoting this by d we have that

d = U−1HU =
h

∑
i=1

A′i A
′
i
† , A′i = U−1AiU = U† AiU . (3.9)

The diagonal matrix d has real positive elements. To show that let the eigenvectors

{e(p)} and eigenvalues λp of H

He(p) = λpe(p) =⇒ ∑
n

Hmne(p)
n = λpe(p)

m . (3.10)

Since H = H† the set {e(p)} is orthonormal and complete, these obey the orthogonality

and completeness

∑
m

e(p)
m
∗
e(q)m = δpq , ∑

p
e(p)

m
∗
e(p)

n = δmn . (3.11)

Using that we obtain from (3.10) that

λp = ∑
m,n

e(p)
m
∗
Hmne(p)

n = · · · =
h

∑
i=1

∑
m
| f (p)

im |
2 > 0 , (3.12)

where

f (p)
im = ∑

n
e(p)

n
∗
(Ai)nm . (3.13)

We define the diagonal matrix d1/2 whose entries are the square roots of the entries of

d and then the matrices

Ãi = d−1
1/2A′id1/2 . (3.14)

One may show with the help of the rearrangement theorem that the matrices Ãi are

unitary (Exercise). Recalling all steps

Ãi = S−1AiS , S = Ud1/2 . (3.15)

through the indicated similarity transformation.

• If two unitary reps are equivalent through a similarity transformation then a unitary

matrix can be found which proves the same equivalence when used in the similarity

transformation.

Proof: Proceeds along similar lines as above.
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• If a rep is in its reduced form (3.4) then a similarity transformation can bring it into

a unitary reduced form with Q(A) = 0 that is

Γ(A) =

(
Γ(1)(A) 0

0 Γ(2)(A)

)
, (3.16)

with Γ(i)(A), i = 1, 2 unitary reps.

Proof: Proceeds along similar lines as above.

3.2 Criteria for (ir)reducibility of a representation; Schur’s lemmas

Next we state and prove several theorems which will lead to criteria for deciding

whether a given rep is reducible or not.

• Schur’s first lemma: Any matrix which commutes with all matrices in an irrep is

proportional to the unit matrix.

Proof: It is clearly sufficient to restrict to unitary reps. By assumption if C is such a

matrix it obeys

[C, Γ(A)] = 0 , ∀ A ∈ G . (3.17)

It is sufficient to consider a Hermitian matrix C. The reason is that by taking the

Hermitian adjoint of (3.17) we see that [C†, Γ(A)] = 0, ∀ A ∈ G, as well. The matrices

C + C† and i(C− C†) are Hermitian and commute with Γ(A). Hence, if we can show

that these matrices are proportional to the identity then so is C. Then C can be brought

into a diagonal form by a unitary transformation. This transformation acts also on the

rep matrices Γ(A) transforming then into another equivalent rep.

Assuming the above we write (3.17) in components to obtain

(Cmm − Cnn) Γ(A)mn = 0 , (3.18)

where we used the same symbols for the matrices after the similarity transformation.

With no loss of generality assume that the first k of the diagonal entries of C are equal

and different than the rest. Then, the indices m, n split as (m̂, m′) and (n̂, n′), with

m̂ = 1, 2, . . . k and m′ = k + 1, . . . and similarly for n̂ and n′. Specializing (3.18) to

(m, n) = (m̂, n′) and (m, n) = (m′, n̂) we learn that, since by hypothesis Cm̂m̂ 6= Cm′m′ ,

the rep matrix elements Γ(A)m̂n′ = Γ(A)m′n̂ = 0. Hence the rep matrices Γ(A) take a
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reducible form for all A ∈ G. Hence, C should be proportional to the identity which

will also hold for the original matrix C before the similarity transformation.

It follows that if C commutes with all rep matrices and is not proportional to the iden-

tity the rep is reducible.

• The converse: If the only matrices that commute with all matrices of a rep is pro-

portional to the unit matrix, then the rep is irreducible.

Proof: Let’s assume that the rep is reducible, that is with a similarity transformation

it can be put into the form (3.16). Assume that S is the matrix that does this, i.e.

Γ′(A) = S−1Γ(A)S =

(
Γ(1)(A) 0

0 Γ(2)(A)

)
, (3.19)

where the Γ(i)(A)’s are unitary irrespectively of the Γ(A), with dimensions n1 and n2.

We would like a matrix C such that [C, Γ′(A)] = 0, ∀ A ∈ G. An obvious choice is the

block diagonal one

C =

(
c1 In1 0

0 c2 In2

)
, (3.20)

where the constants c1 6= c2. This implies that

[Γ(A), SCS−1] = 0 , ∀ A ∈ G . (3.21)

By assumption SCS−1 and consequently C, should be proportional to the identity.

This cannot be the case since c1 6= c2. Hence, there is a contradiction with the original

assumption that Γ(A) is a reducible rep. Therefore the rep Γ(A) is irreducible.

• Schur’s second lemma: If Γ(1)(A) and Γ(2)(A) are two irreps with dimensions n1 6

n2 and a n1 × n2 matrix S is found obeying

Γ(1)(A)S = SΓ(2)(A) , ∀A ∈ G , (3.22)

then either S is the null matrix, or n1 = n2 in which case the irreps are equivalent.

Proof: We assume from the outset the Γ(i)(A)’s are irreps. By taking the Hermitian

adjoint of (3.22) and using the fact that Γ(i)†
(A) = Γ(i)(A−1) we have that

S†Γ(1)(A−1) = Γ(2)(A−1)S† =⇒ S†Γ(1)(A−1)S = Γ(2)(A−1)S†S , (3.23)
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or using (3.22) we obtain

S†SΓ(2)(A) = Γ(2)(A)S†S , ∀A ∈ G . (3.24)

where at the end we’ ve replaced A−1 by A since it holds for all A ∈ G. From Schur’s

1st lemma the n2 × n2 matrix S†S = cI.

First consider the case with n1 = n2. If c 6= 0, then det S 6= 0 and S−1 exists. Hence

from (3.22) Γ(1)(A) = S−1Γ(2)(A)S so that the reps are equivalent. If c = 0, then

S†S = 0 =⇒ ∑
k

S∗kiSkj = 0 , ∀ i, j . (3.25)

Taking j = i this becomes ∑k |Ski|2 = 0, ∀ i, implying that Ski = 0, ∀ k, i and therefore

S is the null square matrix.

Finally consider the case with n1 < n2. We enlarge the matrix S by adding n2 − n1

rows with all elements zero so that it becomes a square n2 × n2 matrix. Denoting this

matrix by S′ we easily establish that S′†S′ = S†S. Hence det(S′†S′) = det(S†S) = cn2 .

But since det S′ = 0 we have that det S†S = 0 and therefore c = 0. Taking the element

(S†S)ii = ∑k |Ski|2 = 0, ∀ i, we establish that S is the null matrix.

3.3 The great orthogonality theorem

If we consider all the inequivalent unitary irreps of a group G, then

∑
A∈G

Γ(i)(A)∗µνΓ(j)(A)αβ =
h
li

δijδµαδνβ , (3.26)

where h is the order of G and li is the dimensionality of the rep Γ(i)(A). We may have

n irreps so that i = 1, 2, . . . , n. This is called the great orthogonality theorem.

Proof: First we consider two inequivalent reps Γ(i)(A), with dimensions li, i = 1, 2

and we construct the l2 × l1 matrix

M = ∑
A∈G

Γ(2)(A)X[Γ(1)(A)]−1 , (3.27)

where X is an arbitrary l2 × l1 matrix. This matrix has the property

Γ(2)(B)M = MΓ(1)(B) , ∀ B ∈ G . (3.28)
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To see that start with the l.h.s

Γ(2)(B)M = ∑
A∈G

Γ(2)(B)Γ(2)(A)X[Γ(1)(A)]−1

= ∑
A∈G

Γ(2)(BA)X[Γ(1)(A)]−1 (3.29)

= ∑
A∈G

Γ(2)(BA)X[Γ(1)(BA)]−1Γ(1)(B)

= MΓ(1)(B) ,

where in the last step we have used the rearrangement theorem. Due to (3.28) and

Schur’s 2nd lemma if the reps are inequivalent then M = 0 or in terms of its elements

Mαµ = 0 = ∑
A∈G

∑
κ,λ

Γ(2)(A)ακXκλΓ(1)(A−1)λµ . (3.30)

Since X is arbitrary we may set all of its element to zero except for Xβν, i.e. Xκλ =

δκβδλν. That implies

∑
A∈G

Γ(2)(A)αβΓ(1)(A−1)νµ = 0 . (3.31)

Consider next the case of the same reps Γ(1)(A). Then the matrix M is defined as

M = ∑
A∈G

Γ(1)(A)X[Γ(1)(A)]−1 (3.32)

and following similar steps as above we prove that

Γ(1)(B)M = MΓ(1)(B) , ∀ B ∈ G . (3.33)

Then from Schur’s first lemma this is a multiple of the unit matrix, i.e.

M = ∑
A∈G

Γ(1)(A)X[Γ(1)(A)]−1 = c(X)I , (3.34)

where the argument in c(X) emphasizes that this constant depends on the choice of

the matrix X. Choosing as before Xκλ = δκβδλν, means that c(X) can be labeled in this

case by cβν. Then we have in components

Mαµ = ∑
A∈G

Γ(1)(A)αβΓ(1)(A−1)νµ = cβνδαµ . (3.35)
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To determine cβν we set α = µ and sum over α = 1, 2, . . . , l1. We obtain

l1cβν =
l1

∑
α=1

∑
A∈G

Γ(1)(A)αβΓ(1)(A−1)να

= ∑
A∈G

Γ(1)(A−1A)νβ = ∑
A∈G

Γ(1)(E)νβ = ∑
A∈G

δνβ = hδνβ . (3.36)

Therefore

cβν =
h
l1

δνβ . (3.37)

Thus for general reps

∑
A∈G

Γ(i)(A)αβΓ(j)(A−1)νµ =
h
li

δijδµαδνβ , (3.38)

For unitary reps

Γ(j)(A−1)νµ = [Γ(j)(A)]−1
νµ = [Γ(j)(A)]†νµ = Γ(j)(A)

∗
µν (3.39)

and we obtain (3.26).

• One may establish the following inequality (later in (3.62) this will be proven to be a

strict equality)
n

∑
i=1

l2
i 6 h (3.40)

and hence that the dimensionality of an irrep is bounded as

li 6
√

h , i = 1, 2, . . . , n . (3.41)

Proof: The great orthogonality theorem (3.26) can be viewed as an orthonormality

relation of the vectors

V(i)
αβ (A) =

√
li
h

Γ(i)
αβ(A) . (3.42)

in the h-dimensional vector space of group elements in G. The number of these vectors

is found by summing over the indices α, β giving, for each i, li and then summing over

the inequivalent irreps which is precisely the l.h.s. of (3.40). This number has of course

to be less than the dimensionality of the vector space, thus proving (3.40). Then (3.41)

follows trivially.

30



Prof. K. Sfetsos LECTURE NOTES ON GROUP REPRESENTATION THEORY

3.4 The character of a representation

Because all matrix reps related by a similarity transformation are equivalent there is

a certain degree of arbitrariness in the actual form of the rep matrices. It is therefore

worthwhile to develop a method of characterizing a given rep in a manner which is

invariant under the similarity transformation.

Clearly this is achieved by taking the traces of the reps matrices since these are inde-

pendent of any similarity transformation. We will denote them by

χ(A) = Tr(Γ(A)) =
l

∑
i=1

Γ(A)ii , A ∈ G (3.43)

and we will call the character system of the rep the set of these h numbers.

Remarks:

• The characters of group elements in the same class are equal.

Proof: Since in a class all group elements are related by a similarity transformation

the proof is immediate. Thus, for a given rep there are as many distinct characters as

classes. Hence, we better use the symbol χ(i)(Ca) ≡ χ
(i)
a to indicate the character in a

given class of conjugate elements.

• The character orthogonality theorem can be written as

∑
A∈G

χ(i)(A)χ(j)(A)∗ =
k

∑
a=1

haχ
(i)
a χ

(j)∗
a = hδij , (3.44)

where the second summation is over the distinct k classes of the group, the ath one

having ha elements.

Proof: We set in (3.26) ν = µ and β = α and then sum over µ and α. Then we obtain

∑
A∈G

χ(i)(A)χ(j)(A)
∗
=

h
li

δij ∑
α,β,µ,ν

δµαδνβδµνδαβ =
h
li

δij ∑
α

δαα = hδij . (3.45)

To finish the proof we use the fact that the character of a group element in a rep de-

pends only on the class in which it belongs.

• The number n of irreps of G is at most equal to the number of k conjugacy classes in
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G (will be proven later in (3.63) that this is a strict equality), i.e.

n 6 k . (3.46)

Proof: By defining

e(i)a =

√
ha

h
χ
(i)
a , (3.47)

one may view (3.44) as the orthonormality relation of the above unit vectors in the

k-dimensional space of the classes of G. Hence, the number of linearly independent

such vectors, that is the number of irreps of G, cannot exceed the dimensionality of

this space k.

• In an irrep, the sum of the matrices of elements of a conjugacy class Ca is proportional

to the identity, that is

Mi
a = ∑

X∈Ca

Γ(i)(X) =
ha

li
χ
(i)
a I . (3.48)

Proof: We first compute

Γ(i)(A)Mi
a[Γ

(i)(A)]−1 = ∑
X∈Ca

Γ(i)(A)Γ(i)(X)[Γ(i)(A)]−1 = ∑
X∈Ca

Γ(i)(AXA−1)

= Mi
a , ∀ A ∈ G . (3.49)

Hence from Schur’s 1st lemma Mi
a = λi

aI. The proportionality constant is computed

by taking the trace of both sides

Tr(Mi
a) = ∑

X∈Ca

χ(i)(X) = haχ
(i)
a = λi

ali =⇒ λi
a =

ha

li
χ
(i)
a . (3.50)

• A necessary and sufficient condition for the equivalence of two irreps is the equality

of their character systems.

Proof: From the invariance of the characters under a similarity transformation it is

clear that we have a necessary condition. To show sufficiency we must show that

if the characters of two irreps are identical then the reps are equivalent. To prove

that, assume that the irreps Γ(R) and Γ′(R) are inequivalent with equal characters

χ(R) = χ′(R). Then from (3.44) we have that ∑A∈G χ(R)χ′(R)∗ = 0, which implies

that ∑A∈G |χ(R)|2 = 0 which contradicts the fact that from (3.44) the r.h.s. should

equal h. Hence, for equal characters the corresponding irreps are also equivalent.
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3.5 Decomposition of reducible representations

We have seen that every reducible rep can be brought into the form (3.7). Then we

immediately have that

χ(A) =
n

∑
i=1

aiχ
(i)(A) . (3.51)

The number of times that an irrep Γ(i)(A) appears in the reducible rep Γ(A) is

ai =
1
h ∑

A∈G
χ(A)χ(i)(A)∗ =

1
h

k

∑
a=1

haχaχ
(i)
a
∗

, (3.52)

which follows immediately by using the character orthogonality theorem (3.44).

Remarks:

• The sum for a reducible, in general, rep

∑
A∈G
|χ(A)|2 =

k

∑
a=1

ha|χa|2 = h
n

∑
i=1

a2
i > h . (3.53)

Proof: We compute

∑
A∈G
|χ(A)|2 = ∑

A∈G

n

∑
i,j=1

aiajχ
(i)(A)χ(j)(A)∗

=
n

∑
i,j=1

aiaj ∑
A∈G

χ(i)(A)χ(j)(A)∗︸ ︷︷ ︸
hδij

= h
n

∑
i=1

a2
i . (3.54)

The inequality follows from the fact that at least one of the ai’s equals one.

• A necessary and sufficient condition for rep Γ(A) to be irreducible is that

∑
A∈G
|χ(A)|2 =

k

∑
a=1

ha|χa|2 = h . (3.55)

Proof: The necessity follows from the fact that if the rep is irreducible say Γ(j)(A) then

from (3.52) we have that ai = δij. Then the r.h.s. of (3.53) equals h. The sufficiency

is also clear, since if the rep were reducible then the r.h.s. of (3.53) would have been

strictly larger than h.

Hence we have a criterion for deciding whether a rep is reducible that depends only
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on the characters of the rep and the order of the group.

• From the relation between conjugacy classes and class products we have that

Mi
aMi

b =
k

∑
c=1

cabcMi
c , a, b = 1, 2, . . . , k , i = 1, 2, . . . , n . (3.56)

Substituting (3.48) we obtain

hahbχ
(i)
a χ

(i)
b = li

k

∑
c=1

cabchcχ
(i)
c . (3.57)

3.6 The regular representation

From the multiplication table of a group G we can always form a reducible rep called

the regular representation. Let the elements of G be {X1, X2, . . . , Xh}.
Definition: The regular rep is defined as10

Γreg(Xm) : [Γreg(Xm)]kl = δ
(

Xm − XkX−1
l

)
≡
{

1 if Xm = XkX−1
l

0 otherwise .
(3.58)

To prove that this is a rep we must show that Γreg(A)Γreg(B) = Γreg(AB). For the

matrix elements we have

[Γreg(A)Γreg(B)]ml =
h

∑
k=1

[Γreg(A)]mk[Γ
reg(B)]kl =

h

∑
k=1

δ
(

A− XmX−1
k

)
δ
(

B− XkX−1
l

)
= δ

(
A− XmX−1

l B−1
)
= δ

(
AB− XmX−1

l

)
(3.59)

= [Γreg(AB)]ml .

The characters of the rep are

χreg(X) =
h

∑
i=1

[Γreg(X)]ii =
h

∑
i=1

δ
(

X− XiX−1
i

)
=

h

∑
i=1

δ (X− E)

= hδ (X− E) . (3.60)

Hence, it is nonzero only for the identity for which equals the order of the group h.

Exercise: Construct the regular rep for the covering group of the equilateral triangle.

10The definition of δ(A− B) for matrices A and B is a direct generalization of (3.1).
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3.7 The celebrated theorem

Using (3.52) we may compute the number of times the ith irrep appears in the regular

rep as

ai =
1
h ∑

A∈G
χreg(A)χ(i)(A)∗ =

1
h

χreg(E)χ(i)(E)∗ =
1
h

hli = li , (3.61)

where we used (3.60). Thus, the ith irrep appears as often as its dimension. Since the

dimension of the regular rep is h we have that

h =
n

∑
i=1

aili =⇒ h =
n

∑
i=1

l2
i . (3.62)

Remarks:

• The number n of irreps in a group equals the number of classes k, i.e.

n = k . (3.63)

Proof: We start from (3.57) and sum over all irreps obtaining

hahb

n

∑
i=1

χ
(i)
a χ

(i)
b =

k

∑
c=1

cabchc

n

∑
i=1

liχ
(i)
c . (3.64)

However
n

∑
i=1

liχ
(i)
c = χ

reg
c = hδc,1 , (3.65)

where the index c = 1 corresponds to the identity element which is a class on its own.

Therefore
n

∑
i=1

χ
(i)
a χ

(i)
b =

h
hahb

cab1 =
h
ha

δba′ , (3.66)

where Ca′ denotes the class whose elements are the inverses of the elements in Ca and

where we used (2.50). For unitary reps χ
(i)
a = χ

(i)∗
a′ and therefore

n

∑
i=1

χ
(i)
a χ

(i)∗
b =

h
ha

δab . (3.67)

This is a new orthogonality relation. Summing up (3.44) over i = 1, 2, . . . , n we get

that
n

∑
i=1

k

∑
a=1

haχ
(i)
a χ

(j)∗
a = hn . (3.68)
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Similarly, summing up (3.67) (after multiplying both sides by ha) over a = 1, 2, . . . , k

we obtain
k

∑
a=1

n

∑
i=1

haχ
(i)
a χ

(j)∗
a = hk . (3.69)

Comparing the above two expressions we immediately see that (3.63) holds.

An alternative proof arises by following the argument that led to (3.46) but now with

the role of the vector space played by the space of conjugate classes and the number

of linear independent vectors is k. Hence, k 6 n and compatibility with (3.46) requires

(3.63).

3.8 Character tables

It is convenient to display the characters of the various irreps of a given group in a

character table. The rows are labeled by the irreps and the columns are labeled by the

classes preceded by the number of the class elements. The entries are the characters.

The form of a character table is

G h1C1 h2C2 h3C3 · · ·
Γ(1) χ

(1)
1 χ

(1)
2 χ

(1)
3 · · ·

Γ(2) χ
(2)
1 χ

(2)
2 χ

(2)
3 · · ·

Γ(3) χ
(3)
1 χ

(3)
2 χ

(3)
3 · · ·

...
...

...
...

, C1 ≡ {E} , h1 = 1 . (3.70)

Although a character table contains much less information about a given group than

the rep matrices themselves, it has enough information for many purposes. In ad-

dition, it is much easier to construct without prior knowledge of the matrices of the

irreps.

3.8.1 The rules for constructing character tables

The construction of the character table is based on the following ingredients which we

have already encountered, but we repeat here for convenience:

Rule 1: The number of irreps equal the number of classes, i.e. (3.63). Hence the char-

acter tables have equal numbers of rows and columns.
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Rule 2: The dimensionalities of li of the irreps are constrained by the fact that
n

∑
i=1

l2
i = h,

that is (3.62). In many cases this equation has a unique solution subject to the con-

straint of rule 1. Then the first column of the character table is determined by the fact

that χ(i)(E) = li. Also since there is always the one-dimensional irrep in which all

elements are represented by +1, the first row can be written as χ
(1)
k = 1, ∀ k.

Rule 3: The rows of the table must be orthogonal and normalized to h with weight

factors ha as dictated by (3.44)

k

∑
a=1

haχ
(i)
a χ

(j)∗
a = hδij . (3.71)

Rule 4: The columns of the table must be orthogonal and normalized to h/ha as dic-

tated by (3.67)
n

∑
i=1

χ
(i)
a χ

(i)∗
b =

h
ha

δab . (3.72)

Rule 5: The elements of the ith row are related by (3.57)

hahbχ
(i)
a χ

(i)
b = li

k

∑
c=1

cabchcχ
(i)
c . (3.73)

3.8.2 Example of character table construction

We consider the covering group of the equilateral triangle D3 for which we have three

classes and three irreps. Therefore the character table has the form

D3 C1 3C2 2C3

Γ(1) 1 1 1
Γ(2) 1 α β

Γ(3) 2 γ δ ,

(3.74)

where the complex constants α, β, γ and δ are to be determined. Below we will assume

them to be real, which will be justified by the end result.
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•We apply rule 3 to rows and obtain

rows 1 & 2 : 1 + 3α + 2β = 0 ,

rows 1 & 3 : 2 + 3γ + 2δ = 0 ,

rows 2 & 3 : 2 + 3αγ + 2βδ = 0 , (3.75)

row 2 : 1 + 3α2 + 2β2 = 6 ,

row 3 : 4 + 3γ2 + 2δ2 = 6 .

From the 1st and the 4th eqs. we obtain that (α, β) = (−1, 1) or (3
5 ,−7

5). Similarly from

the 2nd and the 5th eqs. we obtain that (γ, δ) = (0,−1) or (−4
5 , 1

5). Out of the four in

total possible solutions, the 3rd eq. selects (α, β, γ, δ) = (−1, 1, 0,−1) or (3
5 ,−7

5 ,−4
5 , 1

5).

•We apply rule 4 to columns and obtain

columns 1 & 2 : 1 + α + 2γ = 0 ,

columns 1 & 3 : 1 + β + 2δ = 0 ,

columns 2 & 3 : 1 + αβ + γδ = 0 , (3.76)

column 2 : 1 + α2 + γ2 = 2 ,

column 3 : 1 + β2 + δ2 = 3 ,

a system which is satisfied by both of the above two solutions.

• Finally we apply rule 5 for a = b = 2, i = 2 and using (2.49) we obtain β = 1 which

singles out the first of our solutions. The rest of the eqs. arising for different values of

a, b and i are then trivially satisfied.

Hence the resulting character table is

D3 C1 3C2 2C3

Γ(1) 1 1 1
Γ(2) 1 −1 1
Γ(3) 2 0 −1 .

(3.77)

Note: In the above example all the entries of the character table turned out to be not

only real but also integer numbers. I emphasize that generically this is not the case.
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Exercise: Construct the character table for the group D4.
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4 Direct product groups

It often happens that the complete symmetry group of a system can be broken into two

or more types such that all the operators of one type commute with all the operators

of any other type. When this occurs then we can simplify our work by introducing the

concept of the direct product groups.

If we have two groups A = {A1, A2, . . . , Ah} and B = {B1, B2, . . . , Bh′}, such that all

elements of A commute with all elements of B and that the only element in common

is the identity, then we associate to them the direct product group

A× B = {AmBn , m = 1, 2, . . . , h , n = 1, 2, . . . , h′} , (4.1)

that is a group whose elements are all possible products of the elements of A with

those of B and has order hh′. Clearly the product of two elements of the direct product

group preserves closeness.

In order to proceed further we define below the direct product of matrices and present

its essential properties.
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4.1 The direct (or Kronecker) product of matrices

Let A and B be m× n and p× q matrices, respectively. Then, their direct product is an

(mp)× (nq) matrix given by

A⊗ B =


a11B · · · a1nB

... . . . ...
am1B · · · amnB



=



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

... . . . ...
...

... . . . ...
a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq

...
...

... . . . ...
...

...
...

...
... . . . ...

...
...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

... . . . ...
...

... . . . ...
am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq



.(4.2)

A useful way to represent the elements of the matrix A ⊗ B is with a double set of

indices

(A⊗ B)ia,jb = AijBab . (4.3)

Note that

number of rows :
m

∑
i=1

p

∑
a=1
·1 = mp ,

number of columns :
n

∑
j=1

q

∑
b=1
·1 = nq . (4.4)

Remarks:
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• The direct product is bilinear and associative

A⊗ (B + C) = A⊗ B + A⊗ C ,

(A + B)⊗ C = A⊗ C + B⊗ C ,

(kA)⊗ B = A⊗ (kB) = k(A⊗ B) , (4.5)

(A⊗ B)⊗ C = A⊗ (B⊗ C) ,

where A, B and C are matrices and k is a number.

Proof: The proof of the first three is trivial. To prove the last one we write

((A⊗ B)⊗ C)ijk,mnl = (A⊗ B)ij,mnCkl = AimBjnCkl ,

(A⊗ (B⊗ C))ijk,mnl = Aim(B⊗ C)jk,nl = AimBjnCkl . (4.6)

• The direct product is not commutative as in general, A⊗ B 6= B⊗ A.

• If A, B, C and D are matrices of such size that one can form the matrix products AC

and BD, then

(A⊗ B)(C⊗ D) = AC⊗ BD , (4.7)

assuming that the elements Bjn and Cmk commute, i.e. [Bjn, Cmk] = 0. This is called

the mixed-product property, because it mixes the ordinary matrix product and the direct

product.

Proof: Note that

((A⊗ B)(C⊗ D))ij,kl = ∑
m,n

(A⊗ B)ij,mn(C⊗ D)mn,kl

= ∑
m,n

AimBjnCmkDnl = (AC)ik(BD)jl = ((AC)⊗ (BD))ij,kl . (4.8)

If [Bjn, Cmk] 6= 0 then there is an additional contribution (Exercise).

• Note the property

(A⊕ B)⊗ C = A⊗ C⊕ B⊗ C , A⊗ (B⊕ C) = A⊗ B⊕ A⊗ C . (4.9)

• The matrix A⊗ B is invertible if and only if A and B are invertible, in which case the
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inverse is given by

(A⊗ B)−1 = A−1 ⊗ B−1 . (4.10)

• The operation of transposition acts as

(A⊗ B)T = AT ⊗ BT . (4.11)

• Suppose that A and B are square matrices of size n and q, respectively. Let λ1, . . . , λn

be the eigenvalues of A and µ1, . . . , µq be those of B. Then the eigenvalues of A⊗ B

are

λiµj, i = 1, . . . , n , j = 1, . . . , q . (4.12)

Proof: Let ψ1 and ψ2 eigenvectors of A and B respectively with corresponding eigen-

values λi and µj. Defining Ψ = Ψ1 ⊗Ψ2 we have that

(A⊗ B)Ψ = (A⊗ B)(Ψ1 ⊗Ψ2) = (AΨ1)⊗ (BΨ2) = λiµjΨ . (4.13)

• The trace and determinant of a direct product are given by (Exercise)

Tr(A⊗ B) = TrA TrB , det(A⊗ B) = (det A)q(det B)n . (4.14)

4.2 Direct product representations of different groups

The direct product of the rep matrices of the irreps of the groups A and B form irreps

of the direct product group.

Proof: By definition we have that

Γ(A×B)(AkBl) = Γ(A)(Ak)⊗ Γ(B)(Bl) , (4.15)

from which

Γ(A×B)(AkBl)Γ
(A×B)(Ak′Bl′) =

(
Γ(A)(Ak)⊗ Γ(B)(Bl)

) (
Γ(A)(Ak′)⊗ Γ(B)(Bl′)

)
= Γ(A)(Ak Ak′)⊗ Γ(B)(Al Al′) = Γ(A×B)(Ak Ak′BlBl′) , (4.16)

where in the second line we ’ve used (4.7).

All of the irreps of the direct product groups can be found by taking direct products
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of the irreps of the individual groups.

Proof: Let li and l′i be the dimensionalities of the irreps of the groups A and B, sat-

isfying ∑
i=1

l2
i = h and ∑

i=1
l
′2
i = h′. The dimensionalities of the direct product matrix

will be lij = lil′j. Therefore we have that ∑i,j l2
ij = · · · = hh′, which is the order of

A × B. Hence, there cannot be any other irreps in addition to those expressed as a

direct product.

The number of conjugate classes of the direct product group equals the product of

classes of the component groups.

The character of any direct product rep is the product of the characters of the compo-

nent reps.

Proof: We have that

χ(A×B)(AkBl) = ∑
i,j

Γ(A×B)(AkBl)ij,ij = ∑
i,j

Γ(A)(Ak)iiΓ(B)(Bl)jj

= χ(A)(Ak)χ
(B)(Bl) . (4.17)

4.2.1 Example of character table for direct product representations

Consider the group D3h which is the direct product of the covering group of the equi-

lateral triangle D3 with multiplication table in (2.6) with the group H = {E, σh} of

reflections in the plane of the triangle whose multiplication table is

H E σh

E E σh

σh σh E .
(4.18)

This group is Abelian, has two classes {E} and {σh} and two 1-dim irreps.

H E σh

Γ+ 1 1
Γ− 1 −1 .

(4.19)
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The character table of the direct product D3h = H× D3 is

D3h E {A, B, C} {D, F} σh σh{A, B, C} σh{D, F}
Γ(1+) 1 1 1 1 1 1
Γ(2+) 1 −1 1 1 −1 1
Γ(3+) 2 0 −1 2 0 −1
Γ(1−) 1 1 1 −1 −1 −1
Γ(2−) 1 −1 1 −1 1 −1
Γ(3−) 2 0 −1 −2 0 1 .

(4.20)

It can be readily verified that the above character table for D3h satisfies all rules gov-

erning character tables.

4.3 Direct product representations within the same group

In many applications we take the direct product of irreps within the same group. Let

Γ(α)(R) and Γ(β)(R) be two such irreps. Then, as in (4.15), the direct product of the

irrep matrices

Γ(α)(R)⊗ Γ(β)(R) ≡ Γ(α×β)(R) , (4.21)

is still a rep with character given by the product of the characters of the two irreps.

An importance difference with the case we encountered before where the irreps were

for different groups, is that now the new rep is in general reducible. We present this

by writing the decomposition

Γ(α)(R)⊗ Γ(β)(R) = ∑
γ

⊕aαβγΓ(γ)(R) , (4.22)

where the notation means that if with a similarity transformation we bring the l.h.s.

into a block diagonal form, then the rep Γ(γ)(R) appears aαβγ times in the r.h.s. The

coefficients aαβγ are called Clebsch–Gordan coefficients and can be computed by first

tracing (4.22). We find that

χ(α×β)(R) = χ(α)(R)χ(β)(R) = ∑
γ

aαβγχ(γ)(R) , (4.23)

which clearly shows that they are symmetric in the first two indices. Then using the
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character orthogonality theorem (3.44) we obtain that

aαβγ =
1
h ∑

R∈G
χ(α)(R)χ(β)(R)χ(γ)(R)∗ =

1
h

k

∑
a=1

haχ
(α)
a χ

(β)
a χ

(γ)∗
a . (4.24)

If the characters are real, then aαβγ is independent of the order of the subscripts. Note

that the decomposition of an irrep and its conjugate rep contains the identity rep only

once. Indeed,

ααα∗E =
1
h

k

∑
a=1

haχ
(α)
a χ

(α∗)
a︸︷︷︸

χ
(α)∗
a

χ
(E)∗
a︸ ︷︷ ︸
1

=
1
h

k

∑
a=1

haχ
(α)
a χ

(α)∗
a = 1 , (4.25)

where in the last step I used (3.72).

Exercise: Compute the decomposition of the direct product of the irreps for the cov-

ering group of the equilateral triangle D3 and show that

Γ(1) ⊗ Γ(i) = Γ(i) , i = 1, 2, 3 ,

Γ(2) ⊗ Γ(2) = Γ(1) , Γ(2) ⊗ Γ(3) = Γ(3) , (4.26)

Γ(3) ⊗ Γ(3) = Γ(1) ⊕ Γ(2) ⊕ Γ(3) .
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5 Applications of representation theory

In most applications of rep theory the group of interest is that of the symmetry oper-

ations that leave invariant a set of operators {Ti}, i = 1, 2, . . . . A notable example of

such an operator is the Hamiltonian of a quantum system. In what follows, we will

restrict our discussion to the case that these operations are rotations, reflections or in-

versions. Nevertheless, the techniques and the results obtained will be applicable to

other kinds of symmetry operations.

5.1 Transformation operators

Denoting by x the position of a point in an d-dimensional space w.r.t. a fixed coordi-

nate system and by x′ the position of the same point in the transformed system w.r.t.

the same coordinate system we have a relation of the form

x′ = Rx , (5.1)

where R is a real, orthogonal d× d matrix. The inverse transformation is x = R−1x′ =

RTx′. Obviously, the set of matrices R form a group, also to be denoted for convenience

by R, with the conventional matrix multiplication as the composition law.

We would like to act on functions of x. For that we introduce a new group with ele-

ments PR defined operationally on functions as

PR f (x) = f (R−1x) . (5.2)

This group is isomorphic to R since

PRPS f (x) = PR f (S−1x) = f (S−1R−1x) = f ((RS)−1x) = PRS f (x) . (5.3)

Note that P−1
R = PR−1 and PI = I.

Assume that a system contains an operator H with eigenfunctions and eigenvalues

Ψ(n) and En, respectively. If a transformation leaves it invariant, i.e,

[H, PR] = 0 ⇐⇒ PRHP−1
R = H , (5.4)
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then it is said that R is a symmetry group of H. In addition, any function Ψ̃(n)(x) =

PRΨ(n)(x) = Ψ(n)(R−1x) will be an eigenfunction of H with the same eigenvalue, i.e.

HΨ̃(n) = HPRΨ(n)(x) = PRHΨ(n)(x) = EnPRΨ(n)(x)

= EnΨ̃(n) . (5.5)

Remarks:

• There is a degeneracy in the spectrum of H associated with the symmetry group.

• By acting on a representative function Ψn(x) with all operators PR we generate all

degenerate eigenfunctions. This degeneracy is called normal.

• If there are more degenerate functions that cannot be obtained this way, then we

have a case of hidden degeneracy. In many instances the explanation of this is that there

is more symmetry called hidden symmetry.

5.2 Constructing representations

Let a set of ln degenerate eigenfunctions {Ψ(n)
ν }, ν = 1, 2, . . . , ln of an operator H with

eigenvalue En. Excluding accidental degeneracy we have that the action of PR on a

member of this set should be a linear combination of members of the same degenerate

set of eigenfunctions. Mathematically this means that

PRΨ(n)
ν (x) = Ψ(n)

ν (R−1x) =
ln

∑
κ=1

Γ(n)(R)κνΨ(n)
κ . (5.6)

The ln-dim matrices obtained in this way provide the ln-dim rep of R.

Proof: We have that

PRPSΨ(n)
ν =

ln

∑
κ=1

Γ(n)(S)κνPRΨ(n)
κ

=
ln

∑
κ,λ=1

Γ(n)(S)κνΓ(n)(R)λκΨ(n)
λ (5.7)

=
ln

∑
λ=1

[
Γ(n)(R)Γ(n)(S)

]
λν

Ψ(n)
λ .

48



Prof. K. Sfetsos LECTURE NOTES ON GROUP REPRESENTATION THEORY

However the l.h.s also equals

PRPSΨ(n)
ν = PRSΨ(n)

ν =
ln

∑
λ=1

Γ(n)(RS)λνΨ(n)
λ . (5.8)

Therefore since the Ψ(n)
ν ’s form a basis

Γ(n)(R)Γ(n)(S) = Γ(n)(RS) , (5.9)

thus proving the assertion.

Definition: We will denote the inner product of two functions Ψ and Φ by

〈Ψ|Φ〉 ≡
∫

d[x]Ψ∗(x)Φ(x) , (5.10)

where d[x] denotes the measure of integration. Also if T is an operator

〈Ψ|T|Φ〉 ≡
∫

d[x]Ψ∗(x)TΦ(x) . (5.11)

If R is a symmetry operation, the following is an important identity

〈Ψ|Φ〉 = 〈PRΨ|PRΦ〉 . (5.12)

Proof: By changing coordinates as x = R−1x′ we have that

〈Ψ|Φ〉 =
∫

d[x′]J[
∂x
∂x′

]Ψ∗(R−1x′)Φ(R−1x′) , [but J[
∂x
∂x′

] = 1, since |det(R)| = 1]

=
∫

d[x′]
[
PRΨ(x′)

]∗ PRΦ(x
′) (5.13)

= 〈PRΨ|PRΦ〉 .

If the basis eigenfunctions are orthonormal, i.e.

〈Ψκ|Ψν〉 =
∫

d[x]Ψ∗κ(x)Ψν(x) = δκν , (5.14)

then the rep Γ(n)(R) is unitary.
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Proof: Using (5.12), the l.h.s. of the above orthonormality condition can be written as

∑
κ′,ν′

∫
d[x] (Γκ′κ(R)Ψκ′(x))

∗ (Γν′ν(R)Ψν′(x))

= ∑
κ′,ν′

Γ∗κ′κ(R)Γν′ν(R)δκ′ν′

= ∑
k′

Γ∗κ′κ(R)Γκ′ν(R) = ∑
k′

Γ†
κκ′(R)Γκ′ν(R) (5.15)

= (Γ†(R)Γ(R))κν .

Hence Γ†(R)Γ(R) = I, ∀ R ∈ G.

Remarks:

• The reps arising in this way are irrreducible. Only in special circumstances where

an accidental symmetry occurs there are more degenerate eigenfunctions and one gets

reducible reps. These however could be irreducible w.r.t. a larger symmetry group.

•What would we have if a different basis set instead of Ψµ is used? How this would

affect the rep? Using a matrix-vector notation to hide indices, if the two basis are

related as

Ψ′ = STΨ ⇐⇒ Ψ = (S−1)TΨ′ , (5.16)

we have that

PRΨ′ = STPRΨ = STΓT(R)Ψ = STΓT(R)(S−1)TΨ′ = Γ
′T(R)Ψ′ , (5.17)

where Γ
′
(R) = S−1Γ(R)S. Hence the two reps are equivalent by a similarity transfor-

mation.

• The dimensionalities of the irreps of the symmetry group that commutes with H

give the degree of degeneracy for each eigenvalue (barring accidental degeneracies).

• If one modifies the operator H by adding a new term, then this degeneracy can be

lifted only if the symmetry group is reduced.

5.3 Basis functions for irreducible representations

Using (5.6) one may construct the irrep matrices if the set of basis functions is pro-

vided. Here we address the reverse issue, namely, if we know the irrep matrices
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how do we construct the basis functions? Starting from (5.6), then multiplying it by

Γ(m)
κ′ν′(R)∗ and summing over all R ∈ G we obtain that

∑
R∈G

Γ(m)
κ′ν′(R)∗PRΨ(m)

ν (x) = ∑
R∈G

ln

∑
k=1

Γ(n)
κν (R)Γ(m)

κ′ν′(R)∗Ψ(n)
k (x) =

h
lm

δmnδνν′Ψ
(n)
κ′ (x) ,

(5.18)

where we have made use on the great orthogonality theorem for reps (3.26). Defining

P (i)
µν =

li
h ∑

R∈G
Γ(i)

µν(R)∗PR , (5.19)

we may write the above as

P (i)
µν Ψ(j)

λ (x) = δijδνλΨ(j)
µ (x) . (5.20)

Hence, when we act on a given basis function Ψ(j)
λ (x) with (5.19) the result is non-zero

if they belong to the same rep and moreover the basis function belongs to the νth row

of the rep.

Remarks:

• A practical way to construct all the partners of the given basis function Ψ(i)
ν (x) is to

compute

P (i)
µν Ψ(i)

ν (x) = Ψ(i)
µ (x) , µ = 1, 2, . . . , li . (5.21)

• Clearly if Γ(i) are all the distinct irreps of the group G with dimensionalities li, then

any function in the space operated on by PR can be decomposed as

Ψ(x) =
n

∑
i=1

li

∑
µ=1

Ψ(i)
µ (x) . (5.22)

Any member of this decomposition can be obtain from

Ψ(i)
µ (x) = P (i)

µµΨ(x) . (5.23)

• If we do not have all the matrices of the ith rep then we may still obtain some less
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detailed information from the corresponding characters. We define

P(i) ≡
li

∑
µ=1
P (i)

µµ =
li
h ∑

R∈G
χ(i)(R)∗PR . (5.24)

Then from (5.23) we obtain

P(i)Ψ(x) =
li

∑
µ=1

Ψ(i)
µ (x) ≡ Ψ(i)(x) , (5.25)

that is P(i) projects out of any function the part that belongs to the ith irrep.

• The inner product of two functions Ψ(i)
µ and Ψ(j)

ν that belong to the µ and ν rows of

the irreps Γ(i) and Γ(j), respectively, satisfy

〈Ψ(i)
µ |Ψ

(j)
ν 〉 =

1
li

δijδµν

li

∑
λ=1
〈Ψ(i)

λ |Ψ
(j)
λ 〉 . (5.26)

Proof: Using (5.12) we immediately have that

〈Ψ(i)
µ |Ψ

(j)
ν 〉 = ∑

µ′,ν′
Γ(i)

µ′µ(R)∗Γ(j)
ν′ν(R)〈Ψ(i)

µ′ |Ψ
(j)
ν′ 〉 . (5.27)

The l.h.s. should be independent of the group element R. Hence, by summing over

all R ∈ G we just get a factor of h multiplying the l.h.s., whereas for the r.h.s. we may

use the great orthogonality theorem (3.26). Then the result follows immediately.

Note that 〈Ψ(i)
µ |Ψ

(i)
µ 〉 is independent of the row the two functions belong to.

5.3.1 An example

We will use the previous analysis to assign the function xz and into the appropriate

irrep of D3. Recall that for that group there are two 1-dim irreps and one 2-dim irrep.

Hence, if this function belongs to the latter irrep we have to find its partner as well.

The best way to proceed is to see how the components of the 3-dim vector x = (x, y, z)
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transform. We easily identify the set of 3-dim transformation matrices R as

E =

 1 0 0
0 1 0
0 0 1

 , A =

 1 0 0
0 −1 0
0 0 −1

 ,

B =

 −
1
2

√
3

2 0√
3

2
1
2 0

0 0 −1

 , C =

 −1
2 −

√
3

2 0

−
√

3
2

1
2 0

0 0 −1

 , (5.28)

D =

 −1
2

√
3

2 0

−
√

3
2 −1

2 0
0 0 1

 , F =

 −
1
2 −

√
3

2 0√
3

2 −1
2 0

0 0 1

 ,

which form a reducible rep as it is clearly an extension of the irrep (2.7).11 Using (5.2)

we find that

PEx = Ex =

 x
y
z

 , PAx = Ax =

 x
−y
−z

 ,

PBx = Bx =

 −
1
2 x +

√
3

2 y√
3

2 x + 1
2 y

−z

 , PCx = Cx =

 −
1
2 x−

√
3

2 y
−
√

3
2 x + 1

2 y
−z

 , (5.29)

PDx = Fx =

 −
1
2 x−

√
3

2 y√
3

2 x− 1
2 y

z

 , PFx = Dx =

 −
1
2 x +

√
3

2 y
−
√

3
2 x− y

2
z

 .

From the above one easily finds the action of the PR’s on x, y and z. For example,

PDx = −1
2(x +

√
3y) and PFy = −1

2(
√

3x + y). Hence, we know the action of the PR’s

on any function of them. For the two 1-dim irreps of D3 we simply have Γ(1)(R) = 1,

∀ R and Γ(2)(E, D, F) = 1 and Γ(2)(A, B, C) = −1. For the 2-dim irrep the matrices are

given by (2.7). Using those and (5.19) we obtain that

P (1) =
1
6
(PE + PD + PF + PA + PB + PC) , (5.30)

11The matrices E, D, F are extended by just adding unity to the 3rd column and row, the reason being
that under these operations z remains inert. However, for A, B, C we have added minus unity precisely
because under a rotation by π about the corresponding axes, as depicted in Fig. 1, z→ −z.
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that

P (2) =
1
6
(PE + PD + PF − PA − PB − PC) (5.31)

and that

P (3) =
1
3

(
PE + PA − 1

2(PB + PC + PD + PF)
√

3
2 (PB − PC + PD − PF)√

3
2 (PB − PC − PD + PF) PE − PA + 1

2(PB + PC − PD − PF)

)
.

(5.32)

Letting Ψ(x) = xz and using (5.23) we may project to the various irreps and to the

corresponding rows. We easily compute that P (1)Ψ(x) = P (2)Ψ(x) = 0, so that xz has

no component in anyone of the 1-dim irreps. Similarly we compute that P (3)
11 Ψ(x) = 0,

so that xz does not belong to the first row of the 2-dim irrep. Hence, it has to belong to

the second row of the 2-dim irrep. Indeed, we easily compute that P (3)
22 Ψ(x) = Ψ(x).

Hence we may write that

Ψ(3)
2 = xz . (5.33)

To compute its partner in this irrep we use the off diagonal element of P (3) in (5.21) as

Ψ(3)
1 = P (3)

12 Ψ(3)
2 = · · · = −yz . (5.34)

Using the spherical coordinates

(x, y, z) = r(sin θ cos φ, sin θ sin φ, cos θ) ,

r > 0 , 0 6 θ 6 π , 0 6 φ 6 2π , (5.35)

we may easily verify the orthonormality condition (5.14) with integration measure

the solid angle dΩ = dθdφ sin θ, provided that we multiply the two functions by√
15/(4π) (Exercise).12

Exercise: Show that the functions 1
2(y

2− x2) and xy can be identified as basis functions

for the 2-dim irrep of D3.

Exercise: Show that the functions x2 + y2 and z2 belong to the Γ(1) irrep of D3 and that

the function z belong to the Γ(2) irrep of the same group.

Exercise: Decompose the function x2z into irreps of the group D3.

12In principle one should include the integral over r, since in spherical coordinates the measure of
integration is d[x] = drdθdφr2 sin θ. However, since we are dealing with monomials of the same degree
the integral over r always gives the same factor and thus it can be consistently omitted.
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Remark: The character table can be slightly enlarged to include information on simple

functions forming a basis for the various irreps. For instance, given the above findings

for D3 the character table in (3.77) can be enlarged to

D3 C1 3C2 2C3

(x2 + y2, z2) Γ(1) 1 1 1
z Γ(2) 1 −1 1
(x, y), (yz, xz), (y2 − x2, xy) Γ(3) 2 0 −1 .

(5.36)

Note that any normalization factors have been omitted in order to simplify the writing.

5.4 Representations of Abelian groups

Since in an Abelian group every element is a class by itself and since the number of

distinct irreps equals the number of classes, the number of distinct irreps equals the

order of the group h. Then (3.62) immediately gives that li = 1, ∀ i = 1, 2, . . . , hence

all the irreps of an Abelian group are 1-dim.

An important consequence is that no degeneracies can occur if the symmetry group

of an operator H is Abelian.

5.4.1 Cyclic groups

In cyclic groups all elements are of the form Xk = Xk, k = 1, 2, . . . , h, with Xh = E.

Then Γ(Xk) = (Γ(X))k. Since Γ(X)h = I, we have that Γ(X) = e2πip/h, p = 1, 2, . . . , h.

Thus we have that the irreps of a cyclic group are of the form

Γ(p)(Xk) = (Γ(p)(X))k = e2πipk/h , p = 1, 2, . . . , h , k = 1, 2, . . . , h . (5.37)

5.4.2 Bloch’s theorem

Assume shifts in a 1-dim space with the coordinate x ∈ [0, ha], where h = 1, 2, . . . and

a ∈ R, generated by A as Ax = x− a, with inverse A−1x = x + a. One may think of it

an a 1-dim crystal with equidistantly spaced atoms.
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0 1 2 h

a

Figure 3: 1-dim crystal of length
L = ha.

Symmetry generated byA : Ax = x− a ,

PAΨ(x) = Ψ(A−1x) = Ψ(x + a) . (5.38)

Assume that we have an operator H whose symmetry group is generated by A and

that its eigenfunctions are periodic with period L = ha. Hence, they should belong to

irreps of the cyclic group of order h and satisfy the property

PAΨ(p)(x) = Ψ(p)(x + a) = e2πip/hΨ(p)(x) = eikaΨ(p)(x) , (5.39)

where k = 2πp/L. Since there is a one to one correspondence between p and k we

may relabel Ψp → Ψk and have

Ψk(x + a) = eikaΨk(x) . (5.40)

Obviously, any function satisfying this condition is of the form

Ψk(x) = eikxuk(x) , u(x + a) = u(x) . (5.41)

These results for the eigenfunctions do not depend on the details of the operator H.

Of course play their role in the construction of the periodic function u(x).

The extension to an d-dim space is trivial. In that case we have the vectors a and k.

Then a function

Ψk(x) = eik·xuk(x) , u(x + a) = u(x) . (5.42)

In quantum mechanics the above is referred to as the Bloch’s theorem for Hamiltoni-

ans corresponding to periodic potentials one encounters in examining 3-dim solids.

5.4.3 The 2-dim rotation group SO(2)

Consider an d-dimensional space and the group of rotations about an axis perpen-

dicular to a plane, e.g. the z axis perpendicular to the x−y plane, in a Cartesian

coordinate system. The group is of infinite order since it corresponds to additions

of successive rotations of arbitrary angles. The irreps are just numbers and satisfy
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Γ(φ1)Γ(φ2) = Γ(φ1 + φ2) with solution Γ(m)(φ) = e−imφ, for some number m. In

many applications one requires periodicity over a full rotation, i.e. Γ(m)(φ + 2π) =

Γ(m)(φ). Then we necessarily have that m ∈ Z. Instead, demanding anti-periodicity

i.e. Γ(m)(φ + 2π) = −Γ(m)(φ), requires that m ∈ Z + 1
2 .

We define the operator Pφ0 by

Pφ0Ψ(φ) = Ψ(φ− φ0) (5.43)

and assume that it belongs to the symmetry group of an operator H. The eigenfunc-

tions of the latter must satisfy that

Pφ0Ψ(m)(φ) = Γ(m)(φ0)Ψ(m)(φ) =⇒ Ψ(m)(φ− φ0) = e−imφ0Ψ(m)(φ) . (5.44)

Any function satisfying the above requirements should be of the form

Ψ(m)(φ, . . . ) = eimφ fm(. . . ) , (5.45)

where the dots represent all coordinates but φ. The detailed form of the function fm

depends on the operator H.

Remarks:

• Note that the identities∫ 2π

0
dφei(m−m′)φ = 2πδm m′ ,

∞

∑
m=−∞

eim(φ−φ′) = 2πδ(φ− φ′) , (5.46)

can be interpreted as the character orthogonality and completeness relations (3.44)

and (3.67), respectively, with "order" of the group h =
∫ 2π

0 dφ = 2π.

• The continuous group SO(2) consists of matrices of the form

R(φ) =

(
cos φ − sin φ

sin φ cos φ

)
, 0 < φ 6 2π . (5.47)

A point with Cartesian coordinates (x, y) is rotated so that after the rotation has coor-

dinates (x′, y′) related to the original ones as depicted below.
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φ
θ x

y

(x,y)

(x',y')

Figure 4: SO(2) rotation by an
angle φ ∈ (0, 2π].

(
x′

y′

)
= R(φ)

(
x
y

)
. (5.48)

The rep (5.47) is reducible since its character

χ(R) = 2 cos φ = eiφ + ε−iφ = χ(1) + χ(−1) . (5.49)

5.4.4 The Orthogonal group O(2)

The group O(2) of 2× 2 orthogonal matrices as R(φ) above with det(R) = 1, but also

of the form

S(φ) =

(
cos φ sin φ

sin φ − cos φ

)
, 0 < φ 6 2π , (5.50)

with det(S) = −1. The group identity is R(0) and the element S(φ) is disconnected

from the identity.

Exercise:

a) Show that S(φ) represents the reflection of the point (x, y) w.r.t. the straight line

y = tan(φ/2)x.

b) Verify that the the inverses R−1(φ) and S−1(φ) are given by

R−1(φ) = R(−φ) , S−1(φ) = S(φ) (5.51)

and that the multiplication table for O(2) is

O(2) R(φ′) S(φ′)
R(φ) R(φ + φ′) S(φ + φ′)

S(φ) S(φ− φ′) R(φ− φ′) ,
(5.52)

hence SO(2) is a proper subgroup of O(2).
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c) The group O(2) is non-Abelian so it should have 2-dim irreps. Show that indeed

the 2× 2 matrices

Γ(m)(R(φ)) =

(
eimφ 0

0 e−imφ

)
, Γ(m)(S(φ)) =

(
0 eimφ

e−imφ 0

)
, (5.53)

form such an irrep. Also show that the great orthogonality theorem (3.26) is indeed

obeyed.

5.5 Selection rules

We may use rep theory and the fact that any function can be decomposed as in (5.22)

to obtain information on integrals without actually computing them or by computing

just a minimum set of them in specific applications. An elementary example is the fact

that if a function is odd, i.e. f (−x) = f (x) then
∫ a
−a dx f (x) = 0. We have already

seen a generalization of this in (5.26). In particular, take j to be the identity rep labeled

by j = 1. Since it is invariant under all group operations we may take this to be a

constant. It is normalized to unity so that

Ψ(1)
1 =

1√
hG

, hG =
∫

d[x] , (5.54)

where hG is the order of the group. Using the decomposition (5.22), for any function∫
d[x]Ψ(x) =

∫
d[x]Ψ(1)

1 (x) , (5.55)

hence if a function has no part belonging to the identity rep its integral will be zero.

More generally

Fij
µν = 〈Ψ(i)

µ |F|Φ
(j)
ν 〉 =

∫
d[x]Ψ(i)∗

µ (x)F(x)Φ(j)
ν (x) , (5.56)

will be non-zero only if the decomposition of the function F(x)Φ(j)
ν (x) into irreps has

a component in the ith irrep and its µth row. Clearly using (5.22) we may consider a

more specialized form than (5.56), namely

Fikj
µρν =

∫
d[x]Ψ(i)∗

µ (x)F(k)
ρ (x)Φ(j)

ν (x) . (5.57)
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Accordingly, the integral will be zero if the direct product of the irreps Γ(k) and Γ(j)

does not contain the irrep Γ(i), no matter what the detailed structure of the various

functions is. This can be done by using the corresponding character decomposition

and (4.17) or (4.24).

As an application let’s compute the non-vanishing integrals (5.56) for the function

F(x) = V · x = V1x + V2y + V3z , (5.58)

where the symmetry group is D3. According to the character table (5.36) the functions

(x, y) are basis partners in the 2-dim irrep Γ(3) for D3. Using also (4.26) we obtain

Γ(j) Γ(3) ⊗ Γ(j)

Γ(1) Γ(3)

Γ(2) Γ(3)

Γ(3) Γ(1) ⊕ Γ(2) ⊕ Γ(3) .

(5.59)

Hence, the integrals in (5.56) of the form F13, F23 and F33, where we have suppressed

row indices, can be non-zero. In addition, since z belongs to the 1-dim irrep Γ(2) we

obtain
Γ(j) Γ(2) ⊗ Γ(j)

Γ(1) Γ(2)

Γ(2) Γ(1)

Γ(3) Γ(3) .

(5.60)

Hence, the integrals in (5.56) of the form F12 and F33 can be non-zero. Overall, we

conclude that the integrals of the form F11 and F22 vanish.

The preceding results in this particular example do not guarantee the non-vanishing

of the remaining integrals. This is reasonable since no-where in the analysis the row

indices were used. To appreciate that take Φ(j)
ν ∼ y. Then FΦ(j)

ν has components pro-

portional to xy, y2 and yz, which means that it belongs to the rep Γ(1) ⊕ Γ(3). Hence,

only integrals for which Ψ(i) belongs to the Γ(1) and Γ(3) irreps can be non-zero. More-

over, if we further assume that the vector components V2 = V3 = 0, then we only have

the xy factor which is proportional to the basis function Ψ(3)
2 . In that case only if Ψ(i)

µ

is proportional to xy, i.e. the 2nd row of the irrep Γ(3) the integral is non-zero.

We can give a more precise criterion by applying to (5.57) the identity (5.12). We easily
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find that (Exercise)

Fikj
µρν =

li

∑
µ′=1

lk

∑
ρ′=1

lj

∑
ν′=1

Γ(i)∗
µ′µ (R)Γ(k)

ρ′ρ(R)Γ(j)
ν′ν(R)Fikj

µ′ρ′ν′ , (5.61)

where R is any element of the group leaving H invariant. The relations (5.61) provide

constraints between the Fijk
µρν’s which are found by evaluating them for different group

elements

We may apply the above for the group D3. Let’s consider the case in which the indices

i, j and k all correspond to the irrep Γ(3) given in (2.7). Then the Greek indices µ, µ′ etc,

necessarily take the values 1 and 2. There are 8 independent integrals

F111, F112, F121, F211, F122, F212, F221, F222 , (5.62)

where we have omitted for convenience the superscripts as they all correspond to the

irrep Γ(3). Applying (5.61) for R = A immediately give that all the Fµρν’s with odd

number of 2’s vanish. Hence we are left with F111, F122, F212 and F221. Next we apply

(5.61) for (µ, ρ, ν) = (1, 1, 1), (1, 2, 2) and (2, 2, 1) and in all cases for R = D, obtaining

the relations (Exercise)

F111 = −1
8

F111 −
3
8
(F122 + F221 + F212) ,

F122 =
3
8
(−F111 + F221 + F212)−

1
8

F122 , (5.63)

F221 =
3
8
(−F111 + F122 + F212)−

1
8

F221 .

Consequently, we may express three of the F’s in terms of the fourth one.13 Hence, we

have obtained just from group rep theory that

F111 ≡ F, F112 = F121 = F211 = F222 = 0, F122 = F212 = F221 = −F . (5.64)

In other words only one integral out of eight is really independent. This result is

independent of the particular details of the functions in the integrand!

13Using other group elements for R should just give a rearrangement of (5.63) (Exercise).
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6 The 3-dim rotation group

The set of all rotations in 3-dim space forms an infinite group, the covering group of a

sphere. All rotations though the same angle form a class irrespectively of the axis they

are performed about, the reason being that any two axis can be connected via another

rotation. Hence there are infinite many irreps.

6.1 General rotations

We have seen that a rotation in the x−y plane can be represented by the matrix (5.47).

From a 3-dim view point the transformation matrix is (0 6 φ < 2π)

Rz(φ) =

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 (6.1)

and similarly

Rx(φ) =

 1 0 0
0 cos φ − sin φ

0 sin φ cos φ

 , Ry(φ) =

 cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

 , (6.2)

for rotations about the x and y axes. A full rotation can be made by taking three suc-

cessive such elementary rotations. The way this is done is to a certain extent arbitrary,

the only limitation being that no two successive rotations are made about the same

axis. Among the 12 such allowed rotations we choose

R(α, β, γ) = Rz(γ)Ry(β)Rz(α) , (6.3)

where the angles α, β and γ are known as Euler angles. Similarly to the case of rota-

tions about a single axis, these rotations are proper in the sense that they have unit

determinant. For that reason the group they form is called SO(3).

Unlike SO(2) rotations, these rotations generally do not commute. In fact two in-

finitesimal SO(3) rotations around the axes x and y performed in opposite order differ

by a single rotation in the z-axis. To see that first we expand the commutator of Rx(α)

and Ry(β) around the identity to second order in the rotation angles α and β. We find
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that (Exercise)

[Rx(α), Ry(β)] = diag(1, 1, 1)−

 1 −αβ 0
αβ 1 0
0 0 1

+ · · ·

= I− Rz(αβ) +O(α, β)3 . (6.4)

Within the same quadratic order approximation this can be rewritten as

Rx(α)Ry(β)R−1
x (α)R−1

y (β)Rz(αβ) = I +O(α, β)3 , (6.5)

which clearly shows that even after performing a full circle of transformations, an

additional infinitesimal rotation around the z axis is still needed in order to return to

the original point.

6.2 Group generators; reps in terms of differential operators

We would like to represent R in the transformation (5.1) in terms of differential opera-

tors. Consider the special case where R = Rz(φz), that is a rotation around the z-axis.

Then, infinitesimally expanding around φz = 0 we obtain that

Rz(φz) = diag(1, 1, 1) +

 0 −δφz 0
δφz 0 0
0 0 0

+O(δφ2
z) . (6.6)

Denoting the infinitesimal difference δx = x′ − x we have that

δx = −δφzy , δy = δφzx , δz = 0 . (6.7)

One observes that if we define the vector δφ = (0, 0, δφz), then the above is the z-

component of the cross product

δx = δφ× x . (6.8)
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The above is a definition of a general rotation with δφ = (δφx, δφy, δφz). In general we

have for the components of (6.8)14

δxi = −εijkxjδφk , i = 1, 2, 3 . (6.10)

The infinitesimal action on a function is

Pδx f (x) = f (x− δx) = f (x− δφ× x) ' f (x)− (δφ× x) · ∇ f (x) . (6.11)

We identify this with

Pδx f (x) ' f (x)− iδφi Ji f (x) , (6.12)

where

Ji = −iεijkxj∂k , (6.13)

is a first order differential operator. From the infinitesimal transformation it is easy to

infer the finite one. A finite rotation around the z axis at an angle φz can be obtained

in n steps such that δφz = φz/n with n→ ∞. We have that

Pφz f (x) = lim
n→∞

(
1− i

φz

n
Jz

)n
f (x) = e−iφz Jz f (x) . (6.14)

We note that the corresponding rotation matrix can be represented as

Rz(φz) = eiφz Jz . (6.15)

Consequently from (6.3) we have that the general rotation can be represented as

R(α, β, γ) = eiγJz eiβJy eiαJz . (6.16)

In addition, from (6.5) we find that

[Jx, Jy] = i Jz , more generally [Ji, Jj] = iεijk Jk . (6.17)

14We use the notation 1, 2, 3 for the components x, y, z, respectively. Also recall that εijk is the totally
antisymmetric tensor, Levi–Civita symbol, in 3-dims. Note the useful properties

εijkεkmn = δimδjn − δinδjm ,

εimnεmnj = 2δij , (6.9)

εijkεijk = 6 .

We will also use the convention that repeated indices are summed over.
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To prove that we simply substitute the expressions for Rx(α, Ry(β) and Rz(αβ) and

expand for small α and β, keeping up to quadratic terms as this is consistent with the

fact that in the r.h.s. of (6.5) we neglect cubic terms. The commutation relations (6.17)

follow by comparing the terms proportional to αβ (Exercise).

Exercise: Using (6.13) verify that the above commutation relations are obeyed.

This set of commutation relations for the group can be viewed in the abstract sense as

providing the definition of a Lie algebra. In this case the SU(2) Lie algebra.

6.3 Elements of Lie-algebras

A Lie algebra is defined in terms of quantities called structure constants which are

obtained from the commutation relations for a set of operators {Ja}, i.e.15

[Ja, Jb] = Cab
c Jc , (6.18)

where the set of Cab
c are the above mentioned structure constants (not to be confused

with the coefficients cabc that appear in the class multiplication (2.46)).

Remarks:

• By definition

Cab
c = −Cba

c . (6.19)

• Also by making use of the Jacobi identity for commutators, i.e.

[[Ja, Jb], Jc] + [[Jc, Ja], Jb] + [[Jb, Jc], Ja] = 0 , (6.20)

one finds that

Cd
abCe

dc + Cd
caCe

db + Cd
bcCe

da = 0 , (6.21)

which should be obeyed if the structure constants are to define a Lie algebra.

Definition: Define a symmetric matrix g with elements

gab = Cac
dCbd

c = gba (6.22)

and, assuming it exists, denote by gab the components of the inverse matrix g−1, i.e.

15We employ as before the convention that repeated indices are summed over.
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(g−1)ab ≡ gab. The matrix gab is called the Killing metric and is used to lower indices,

e.g. Aa = gab Ab. Similarly its inverse gab is used to raise indices, i.e. Aa = gab Ab.

Definition: Define structure constants with all three lower indices as

Cabc = Cab
dgdc . (6.23)

• The above quantities are completely antisymmetric in all three indices.

Proof: Indeed, for a and b this follows from the definition of the structure constants.

For the index c we have that

Cabc + Cacb = Cab
dgdc + (b↔ c) = Cab

dCd f
eCce

f + (b↔ c) . (6.24)

Next we use for the first two factors the Jacobi identity in the indices a, b and f . Then

Cabc + Cacb = −C f a
dCdb

eCce
f − Cb f

dCda
eCce

f − C f a
dCdc

eCbe
f − Cc f

dCda
eCbe

f . (6.25)

We can easily see that the 1st and 4th term cancel each other and similarly for the 2nd

and 3rd. Hence Cabc = −Cacb. Using that Cbac = −Cabc we also find that Ccba = −Cabc

as well.

• Note also that

Cab
c = Cabdgdc . (6.26)

Definition: The quadratic Casimir operator is defined as

C2 = gab Ja Jb . (6.27)

• Its usefulness lies on the fact that

[C2, Ja] = 0 , ∀ a , (6.28)

that is, it commutes with all generators.

Exercise: Prove (6.28).

Exercise: Show that for the SU(2) algebra (6.17) structure constants obey (6.21). Also

show that in this case gab ∼ δab.
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Exercise: Prove that

Cab
cCcd

d = 0 , ∀a, b . (6.29)
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7 SU(2): The group of 2× 2 unitary matrices

The set of 2× 2 unitary matrices with unit determinant form a group (Exersise), called

SU(2), which is a three parameter group. The most general such matrix is of the form

g =

(
a b
−b∗ a∗

)
=

(
α0 + iα3 α2 + iα1

−α2 + iα1 α0 − iα3

)
, (7.1)

where a, b ∈ C whereas (α0, αi) ∈ R, i = 1, 2, 3. The constraint imposed by the require-

ment that det(g) = 1, implies the conditions

|a|2 + |b|2 = 1 ⇐⇒ α2
0 + α2 = 1 . (7.2)

Let’s also introduce the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (7.3)

which are obviously traceless.

Exercise: Show that the Pauli matrices obey

σiσj = δijI + iεijkσk , Tr(σiσj) = 2δij . (7.4)

Remarks:

• The group element (7.1) and its inverse can be written as

g = α0I + iαiσi , g−1 = g† = α0I− iαiσi . (7.5)

• Any 2× 2 traceless matrix h is a linear combination of the Pauli matrices

h = xiσi , (7.6)

where we have, for reasons that will become apparent shortly, denoted the coefficients

of the expansions with xi, i = 1, 2, 3. Using (7.4) these are found as

xi =
1
2

Tr(hσi) . (7.7)

68



Prof. K. Sfetsos LECTURE NOTES ON GROUP REPRESENTATION THEORY

A transformation of h by a unitary matrix g as in (7.1) induces a rotation on the vector

x with components xi of the form (5.1) with the rotation matrix having components

R(g)ij = (α2
0 − α2)δij + 2αiαj + 2α0εijkαk . (7.8)

Proof: We have that for a unitary transformation

h′ = ghg† = gx · σg−1 = x′iσi =⇒ x′i =
1
2

Tr(σigx · σg−1) ≡ R(g)ijxj , (7.9)

where

R(g)ij =
1
2

Tr(σigσjg−1) . (7.10)

Using (7.5) and (7.4) one proves (7.8) ( Exercise).

Remarks: Some properties of the matrix R(R) are:

• It is manifestly real and obeys

RT(g) = R(g−1) . (7.11)

• It is orthogonal, i.e.

R(g)RT(g) = RT(g)R(g) = I . (7.12)

• It has

det(R(g)) = 1 . (7.13)

Hence R(g) ∈ SO(3), the group of proper rotations.

•We may solve the constraint (7.2) as

α0 = − cos
θ

2
, α = sin

θ

2
n̂ . (7.14)

where n̂ is the unit vector. The resulting vector after the rotation is

x′ = Rx = cos θx + (1− cos θ)(n̂ · x)n̂ + sin θ(n̂× x) (7.15)

and represents a rotation in a plane with normal n̂ through an angle θ. In particular,

if we take n̂ = ẑ, i.e. the unit vector along the z-axis, we find that x′ = Rz(θ)x, where

Rz(θ) is the rotation matrix (6.1).
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7.1 Homomorphism between SO(3) with SU(2)

Thus to every 2-dim unitary matrix g of unit determinant corresponds a 3-dim rota-

tional matrix R with elements given by (7.10). Moreover, the above correspondence is

such that if

g1g2 = g =⇒ R(g1)R(g2) = R(g) . (7.16)

Proof: We have that

[R(g1)R(g2)]ij = (R(g1))ik(R(g2))kj =
1
4

Tr(g−1
1 σig1σk)Tr(σkg2σjg−1

2 )

=
1
2

Tr(g−1
1 σig1g2σjg−1

2 ) = R(g1g2)ij = R(g)ij , (7.17)

where we used that Tr(Aσi)Tr(Bσi) = 2Tr(AB) (valid for traceless matrices).

Hence there is a homomorphism between the group of 2-dim unitary unimodular

matrices (SU(2)) and the 3-dim rotations. To show that the homomorphism exists

between the group SU(2) and the whole group of proper rotations SO(3) one should

show that R(g) ranges over all proper rotations as g covers the entire unitary group.

This will be proven shortly.

We would like to know the SU(2) matrices giving rise to the elementary rotations Ry,z

that enter in the general rotation (6.3). We easily see that

exp
(

i
2

ασ3

)
=

(
e

i
2 α 0
0 e−

i
2 α

)
corresponds to Rz(α) (7.18)

and that16

exp
(

i
2

βσ2

)
=

(
cos β

2 sin β
2

− sin β
2 cos β

2

)
corresponds to Ry(β) . (7.19)

Therefore the matrix

g(α, β γ) = e
i
2 γσ3e

i
2 βσ2e

i
2 ασ3 =

(
cos β

2 e
i
2 (α+γ) sin β

2 e
i
2 (γ−α)

− sin β
2 e−

i
2 (γ−α) cos β

2 e−
i
2 (α+γ)

)
, (7.20)

16One way to prove these expressions is to use the Cayley–Hamilton theorem which allows for an
N×N matrix A to write that eA = ∑N−1

n=0 cn An. The coefficients cn are obtained by solving the algebraic

system eλi =
N−1

∑
n=0

cnλn
i , where the λi’s are the eigenvalues of the matrix A.
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corresponds to the rotation (6.3). The relation to the parametrization with a and b or

the αi’s follows by simply comparing with (7.1).

Note that in the rep (6.16) the operator Ji =
σi

2
. Thus an arbitrary rotation can be

induced by an arbitrary SU(2) matrix as in (7.20). However, as it is clear from (7.10)

the matrix (−g) leads to the same rotation as well, so that the representation in not

unique but rather doubled valued. Hence, we have that

R(g1)R(g2) = R(g) =⇒ g1g2 = ±g . (7.21)

Which of the two signs appears cannot be deduced from general arguments and one

has to explicitly check by performing the multiplication g1g2.

Hence we have a 2-fold homomorphism between the group SU(2) and the group

SO(3). Two matrices ±g are associated to a proper rotation R(g).

7.2 Representations of SU(2)

The matrices g in (7.1) form a 2-dim rep of SU(2). Let the 2-dim vector

ξ =

(
ξ1

ξ2

)
, ξi ∈ C , i = 1, 2 , (7.22)

transforming as

ξ ′ = gξ , ξ ′1 = aξ1 + bξ2 , ξ ′2 = −b∗ξ1 + a∗ξ2 , (7.23)

so that it is a basis for this 2-dim rep with the partners being ξ1 and ξ2. The inverse

transformation is

ξ = g−1ξ ′ , ξ1 = a∗ξ ′1 − bξ ′2 , ξ2 = b∗ξ ′1 + aξ ′2 , (7.24)

We may construct higher dimensional reps by taking as a basis the n + 1 monomials

of degree n

g(n)p = ξ
p
1 ξ

n−p
2 , p = 0, 1, . . . , n . (7.25)
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Defining as in (5.2) the transformation operator

Pg f (ξ) = f (g−1ξ) , or Pg f (ξ1, ξ2) = f (a∗ξ1 − bξ2, b∗ξ1 + aξ2). (7.26)

Clearly, applying this transformation to g(n)p we obtain a linear combination of the

same monomials with the same n but different p’s.

Definition: Reparametrizing as p = j + m and n = 2j, where j ∈ Z/2 we define

f (j)
m =

g(2j)√
(j + m)!(j−m)!

=
ξ

j+m
1 ξ

j−m
2√

(j + m)!(j−m)!
, m = −j,−j + 1, . . . , j . (7.27)

Remarks:

• The action of Pg on f (j)
m induces the transformation

Pg f (j)
m = ∑

m′
U(j)

m′m(g) f (j)
m′ , (7.28)

with

U(j)
m′m(g) = ∑

k
Bj

m,m′,k(a∗)j+m−kaj−m′−k(b∗)k−m+m′bk , (7.29)

where the coefficients are given by

Bj
m,m′,k =

(−1)k
√
(j + m)!(j−m)!(j + m′)!(j−m′)!

k!(j + m− k)!(j− k−m′)!(k + m′ −m)!
. (7.30)

Recalling that 0! ≡ 1 and the factorial of a negative integer is infinite, the above sum

over k ranges over all integer values for which no factorial in the denominator has

negative argument. One easily sees that max(0, m−m′) 6 k 6 min(j + m, j−m′).

Proof: The proof is straightforward (Exercise) with the use of (7.26) and the expansion

of the binomial

(a + b)n =
n

∑
m=0

(
n
m

)
an−mbm . (7.31)

• The matrix U(j) with elements (7.29) provides, a unitary irrep.

Proof: First consider

j

∑
m=−j

∣∣ f (j)
m
∣∣2 =

j

∑
m=−j

|ξ1|2(j+m)|ξ2|2(j−m)

(j + m)!(j−m)!
=

(|ξ1|2 + |ξ2|2)2j

(2j)!
. (7.32)
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and

j

∑
m=−j

∣∣Pg f (j)
m
∣∣2 =

j

∑
m=−j

|a∗ξ1 − bξ2|2(j+m)|b∗ξ1 + aξ2|2(j−m)

(j + m)!(j−m)!

=
(|a∗ξ1 − bξ2|2 + |b∗ξ1 + aξ2|2)2j

(2j)!
= · · · (7.33)

=
(|ξ1|2 + |ξ2|2)2j

(2j)!
.

The intermediate step is left as an (Exercise). Hence we have established that

j

∑
m=−j

∣∣Pg f (j)
m
∣∣2 =

j

∑
m=−j

∣∣ f (j)
m
∣∣2 , (7.34)

that is the invariance of the r.h.s. Using (7.28) we find that UU† = U†U = I follows

(Exercise) if the (2j + 1)2 functions f (j)
m f (j)∗

m′ are linearly independent. To prove the

latter statement one needs to show that demanding

∑
m,m′

C(j)
m,m′ f

(j)
m f (j)

m′ = ∑
m,m′

C(j)
m,m′

ξ
j+m
1 ξ

j−m
2 (ξ∗1)

j+m′(ξ∗2)
j−m′√

(j + m)!(j−m)!(j + m′)!(j−m′)!
= 0 , (7.35)

for all ξi’s, necessarily implies that the all coefficients C(j)
m,m′ = 0 (Exercise).

To prove that the rep provided by U(j) is irreducible we use Schur’s (converse) first

lemma. Setting b = 0 and a = e
i
2 α we find that

U(j)
mm′(α) = e−imαδm,m′ , m = −j,−j + 1, . . . , j . (7.36)

Assuming that a matrix M commutes with U(j) matrices we immediately find that

Mmm′(eimα − eim′α) = 0 , ∀α . (7.37)

Hence, Mmm′ = 0 for m 6= m′. Considering a more general matrix U(j) we have that

U(j)
mm′(Mmm −Mm′m′) = 0 , ∀ m, m′ . (7.38)

Since U(j)
mm′ 6= 0 we have that Mmm = Mm′m′ , ∀m, m′. Hence, M is proportional to the

identity matrix and the rep is irreducible.
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To show that U(j) exhausts all distinct irreps, i.e. there no addition inequivalent irreps,

we construct their characters and check their orthogonality and completeness. This is

proven in the next subsection.

Note that

U(1/2) =

(
a −b
b∗ a∗

)
6= g , (7.39)

where g is given in (7.1). This is achieved by the a unitary transformation, i.e.

g = M†U(1/2)M , M = iσ3 . (7.40)

In general we define the equivalent rep

Ũ(j) = M†U(j)M , Mmm′ = i−2mδmm′ . (7.41)

The expression for the matrix elements Ũ(j)
mm′ is similar to that in (7.29) but with coeffi-

cients given by (7.30) multiplied by (−1)m−m′ . Then one verifies that Ũ(1/2) = g.

Exercise: Show that

U(j)
j,m =

(
2j

j−m

)1/2

(a∗)j+m(b∗)j−m ,

U(j)
−j,m =

(
2j

j−m

)1/2

aj−mbj+m . (7.42)

Also note that these "edge values" of m′ = ±j are the only ones for which the contri-

bution of the sum over k in (7.29) collapses to a single term. The case with m = ±j

follows from unitarity.

7.3 The characters

Let’s consider the finite dimensional irreps provided by U(j) with dimensionality lj =

2j + 1, with j = 0,
1
2

, 1,
3
2

, 2, . . . . Any rotation about an arbitrary axis can be brought

into a rotation about the z-axis into the form (7.36). Hence the character is (Exercise)

χ(j)(φ) =
j

∑
m=−j

U(j)
m,m(φ) =

j

∑
m=−j

e−imφ = · · · =
sin
(

j + 1
2

)
φ

sin φ
2

. (7.43)
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Note that χ(j)(0) = 2j + 1, i.e. χ(j)(0) equals the dimensionality of the rep as it should.

In addition, for j half-integer we have that

χ(j)(φ + 2π) = (−1)2jχ(j)(φ) . (7.44)

Hence for j = 0, 1, . . . , periodicity of the character is warranted by taking 0 < φ 6 2π

whereas for j = 0, 1
2 , . . . we have to extend the range as 0 < φ 6 4π.

Remarks:

•With φ ∈ (0, 4π] one may show that these characters obey the completeness relation

∞

∑
j=0, 1

2

χ(j)(φ)χ(j)(φ′)∗ =
π

sin φ
2 sin φ′

2

[
δ(φ− φ′)− δ(φ + φ′ − 4π)

]
=

π

sin2 φ
2

[
δ(φ− φ′) + δ(φ + φ′ − 4π)

]
, 0 < φ 6 4π . (7.45)

This is the continuous analog of (3.67).

Proof: Letting φ = 2θ, with 0 < θ 6 2π and n = 2j = 0, 1, . . . , it is clear that one has

to prove that

∞

∑
n=0

sin(n + 1)θ sin(n + 1)θ′ =
π

2
[
δ(θ − θ′)− δ(θ + θ′ − 2π)

]
, (7.46)

where we’ve used the property δ(ax) = δ(x)/|a|, a ∈ R. However the l.h.s. can be

rewritten as (Exercise)

1
4

∞

∑
n=−∞

ein(θ−θ′) − ein(θ+θ′) =
π

2
[
δ(θ − θ′)− δ(θ + θ′ − 2π)

]
, (7.47)

where for the final step to be valid it is crucial that θ ∈ (0, 2π].

• In addition we may prove the orthogonality relations (Exercise)

∫ 4π

0
dφ sin2 φ

2
χ(j)(φ)χ(j′)∗(φ) = 2πδjj′ , j = 0,

1
2

, . . . , (7.48)

which is the continuous analog of the character great orthogonality theorem (3.44).

Note that both δ-function terms in (7.45) are necessary for compatibility with (7.48).

• If we restrict to integer j’s then φ ∈ (0, 2π]. Then the completeness and the orthogo-

nality relations are given by (7.45) and (7.48), respectively provided we replace on the
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r.h.s. π by π/2 (Exercise).

7.3.1 Character decomposition

We consider the tensor product of two irreps labelled by j and j′ and decompose it

using the character decomposition formula (4.23). Indeed we have that

χ(j)(φ)χ(j′)(φ) =
j+j′

∑
j̃=|j−j′|

χ( j̃)(φ) , j, j′ = 0,
1
2

, . . . . (7.49)

Proof: In general there should be a decomposition of the form

χ(j)(φ)χ(j′)(φ) =
∞

∑̃
j=0

ajj′ j̃χ
( j̃)(φ) . (7.50)

Using (7.48) we have that the coefficients are given by

ajj′ j̃ =
1

2π

∫ 4π

0
dφ sin2 φ

2
χ(j)(φ)χ(j′)(φ)χ( j̃)(φ)∗

=
1
π

∫ 2π

0
dθ

sin nθ sin n′θ sin ñθ

sin θ
, (7.51)

where n = 2j + 1 = 1, 2, . . . , etc. To evaluate the integral we use the theory of residues

in complex analysis. Letting z = eiθ after some algebra we obtain that

ajj′ j̃ = −
1
2

∮
C

dz
2πi

(z2n − 1)(z2n′ − 1)(z2ñ − 1)
(z2 − 1)znzn′zñ , (7.52)

where C is the unit circle in the complex plane traversed counterclockwise. Clearly

the integrand is everywhere an analytic function inside the contour C except for a

potential pole at z = 0. Hence, by expanding into the various terms we have that

ajj′ j̃ = −
1
2

Res
( 1

z2 − 1
(
zn+n′+ñ − zn+n′−ñ − zñ+n−n′ − zn′+ñ−n − z−ñ−n−n′

+ zñ−n−n′ + zn′−ñ−n + zn−n′−ñ)) . (7.53)

Without loss of generality we may assume that n > n′. We also note that in order to

obtain a non-vanishing result the sum n+ n′+ ñ should be odd. Since the contribution

of the prefactor 1/(z2 − 1) to the residue will be though monomials of the form z2m it
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is clear that the 1st and the 3rd terms above do not contribute. Also the contributions

of the 5th and 7th terms to the residue cancel each other. Therefore

ajj′ j̃ = −
1
2

Res
( 1

1− z2

(
zn+n′−ñ + zn′+ñ−n − zñ−n−n′ − zn−n′−ñ)) . (7.54)

Next consider the cases: (i) ñ > n + n′. Then, taking the above remark into account

the exponents of the above four terms are, respectively, 6 −1, > 3, > 1 and 6 −3.

Therefore the total contribution is zero. (ii) ñ 6 n − n′. Similarly the exponents are

> 3, 6 −1, 6 −3 and > 1. Hence, again the total contribution vanishes. (iii) The

remaining case when n − n′ + 1 6 ñ 6 n + n′ − 1. Clearly only the last two terms

contribute, each with −1. Hence, we conclude that, in general

ajj′ j̃ =

{
1 , |j− j′| 6 j̃ 6 j + j′

0 , otherwise
(7.55)

and therefore (7.49) is proven.

7.3.2 The great orthogonality theorem for SU(2) irreps

We would like to write a continuous version of the great orthogonality theorem (3.26).

Clearly the sum over the group elements is replaces by an integral with measure dR.

Its precise form is not important as this "detail" is irrelevant for the computation we

will need.17 In addition the order of the group is hSU(2) =
∫

dR = and the dimension-

ality of the irrep is lj = 2j + 1. Hence we have that

∫
dRU(i)∗

mn (R)U(j)
m′n′ =

hSU(2)

2j + 1
δijδmm′δnn′ . (7.56)

Exercise: Specializing (7.56) for m = m′ = j = i and n = n′ → m show that

∫
dR
(

cos
β

2

)2(j+m) (
sin

β

2

)2(j−m)

=
hSU(2)

2j + 1

(
2j

j−m

)−1/2

. (7.57)

17Essentially it involves an integration over the Euler angles.
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7.4 The Wigner or Clebsch–Gordan coefficients

The decomposition (7.49) and (4.22) imply that the direct product of irreps D(j) is

D(j1) ⊗ D(j2) =
j1+j2

∑
j=|j1−j2|

⊕D(j) = D(j1+j2) ⊕ · · · ⊕ D(|j1−j2|) . (7.58)

This implies that there is a similarity transformation to write the rep matrices as

U(j1) ⊗U(j2) = A−1MA , Mj′m′;jm = δjj′U
(j)
m′m . (7.59)

The components of the unitary matrix A are labeled by Ajm,m1m2 and have yet to be

determined. Consistency requires that it is a square matrix. The double index (m1m2)

takes (2j1 + 1)(2j2 + 1) values. Similarly, the double index (jm) takes the same number

of values since we have that (Exercise)

j1+j2

∑
j=|j1−j2|

j

∑
m=−j

·1 =
j1+j2

∑
|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1) . (7.60)

Hence in components

U(j1)
m′1m1

U(j2)
m′2m2

= ∑
j,m,m′

A−1
m′1m′2,jm′U

(j)
m′m Ajm,m1m2 . (7.61)

Remarks:

• Consider a basis of vectors labeled as before by ψ
(j)
m that transform as in (7.28). Then

the decomposition (7.58) implies that we may write them as a linear combination of

the product ψ
(j1)
m1 ψ

(j2)
m2 . Indeed if (7.61) is obeyed we have that

ψ
(j)
m = ∑

m1,m2

A−1
m1m2,jmψ

(j1)
m1 ψ

(j2)
m2 , |j1 − j2| 6 j 6 j1 + j2 . (7.62)

Proof: It suffices to show that ψ
(j)
m as defined above obeys (7.28). We have that

Pgψ
(j)
m = ∑

m1,m2

A−1
m1m2,jm(Pgψ

(j1)
m1 )(Pgψ

(j2)
m2 )

= ∑
m1,m2

∑
m′1,m′2

A−1
m1m2,jmU(j1)

m′1m1
U(j2)

m′2m2
ψ
(j1)
m1 ψ

(j2)
m2 . (7.63)
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Using the inverse of (7.62)

ψ
(j1)
m1 ψ

(j2)
m2 = ∑

j′m′
Aj′m′,m′1m′2

ψ
(j′)
m′ , (7.64)

we find that

Pgψ
(j)
m = ∑

j′m′

[
A(U(j1) ⊗U(j2))A−1

]
j′m′,jm

ψ
(j′)
m′ = ∑

m′
U(j)

m′mψ
(j)
m′ .

• To determine A we first consider for U(j) the diagonal matrix in (7.36). Then

Pgψ
(j)
m = e−imαψ

(j)
m = e−imα ∑

m1,m2

A−1
m1m2,jmψ

(j1)
m1 ψ

(j2)
m2

= Pg ∑
m1,m2

A−1
m1m2,jmψ

(j1)
m1 ψ

(j2)
m2 = ∑

m1,m2

A−1
m1m2,jme−i(m1+m2)αψ

(j1)
m1 ψ

(j2)
m2 .(7.65)

Since the ψ
(j1)
m1 ψ

(j2)
m2 ’s form a basis we should have that m = m1 + m2. Hence the matrix

elements are of the form

Ajm,m1m2 = ajm1m2δm,m1+m2 , A−1
m1m2,jm = a∗jm1,m2

δm,m1+m2 , (7.66)

due to the unitary of the matrix A. Then (7.61) can be written as

U(j1)
m′1m1

U(j2)
m′2m2

=
j1+j2

∑
j=|j1−j2|

a∗jm′1m′2
ajm1m2U(j)

m′1+m′2,m1+m2
. (7.67)

• There is a certain freedom in determining the coefficients ajm1m2 . Indeed, a matrix of

the form

Sj′m′,jm = sjδjj′δmm′ , |sj| = 1 (7.68)

is unitary and commutes with M. Therefore if we replace in (7.59) A by SA the re-

lation still holds. This freedom allows to choose, for fixed j, the phase of one of the

coefficients ajm1m2 . We choose aj,−j1,j2 to be real.

• The rest of the computation is by "brute force" (it can be safely skipped and jump

directly to the result (7.76)) .
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Multiplying (7.67) with U(j′)∗
m′1+m′2,m1+m2

, integrating over and using (7.56) we have that

a∗jm′1m′2
ajm1m2

hSU(2)

2j + 1
=
∫

dRU(j1)
m′1m1

(R)U(j2)
m′2m2

(R)U(j)
m′1+m′2,m1+m2

(R) (7.69)

To proceed further recall (7.42) and set m′1 = j1, m′2 = −j2. Then

a∗j,j1,−j2 ajm1m2

hSU(2)

2j + 1
=

(
2j1

j1 −m1

)1/2(
2j2

j2 −m2

)1/2

×∑
k
(−1)j2+m2 Bj

m1+m2,j1−j2,k

∫
dR
(

cos
β

2

)2(j+j2+m1−k) (
sin

β

2

)2(j1−m1+k)
.(7.70)

To compute the integral we may use (7.57) with the replacements

j→ 1
2
(j + j1 + j2) , m→ 1

2
(j + j2 − j1) + m1 − k . (7.71)

By doing so the dependence on hSU(2) cancels out. Therefore we have that (Exercise)

a∗j,j1,−j2
ajm1m2

2j + 1
=

√
(2j1)!(2j2)!(j + m1 + m2)!(j−m1 −m2)!(j + j1 − j2)!(j− j1 + j2)!
(j + j1 + j2 + 1)!

√
(j1 + m1)!(j1 −m1)!(j2 + m2)!(j2 −m2)!

×∑
k
(−1)k+j2+m2

(j + j2 + m1 − k)!(j1 −m1 + k)!
(j− j1 + j2 − k)!(j + m1 + m2 − k)!k!(k + j1 − j2 −m1 −m2)!

(7.72)

Specializing to m1 = j1 and m2 = −j2 we have that

|aj,j1,−j2 |
2 = (2j + 1)

(j + j1 − j2)!(j− j1 + j2)!
(j + j1 + j2 + 1)!

Sj1,j2,j , (7.73)

where the sum turns out to be

Sj1,j2,j = ∑
k
(−1)k (j + j1 + j2 − k)!

k!(j− j1 + j2 + k)!(j + j1 − j2 − k)!

= (2j1)!(2j2)!/((j + j1 − j2)!(j1 + j2 − j)!(j− j1 + j2)!) . (7.74)

Hence, remembering our choice of real aj,j,−j2 , we arrive at

aj,j1,−j2 =

√
(2j + 1)(2j1)!(2j2)!

(j1 + j2 − j)!(j + j1 + j2 + 1)!
. (7.75)
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Hence, we obtain the final result that Aj1 j2,m1m2 = ajm1m2δm,m1+m2 , where

ajm1m2 =

√
(j + m1 + m2)!(j−m1 −m2)!(j1 + j2 − j)!(j + j1 − j2)!(j− j1 + j2)!

(j + j1 + j2 + 1)!(j1 + m1)!(j1 −m1)!(j2 + m2)!(j2 −m2)!

∑
k
(−1)k+j2+m2

√
2j + 1(j + j2 + m1 − k)!(j1 −m1 + k)!

(j− j1 + j2 − k)!(j + m1 + m2 − k)!k!(k + j1 − j2 −m1 −m2)!
,(7.76)

where we again recall that k takes all integer values for which all the arguments of

the factors are non-negative. Also with our phase choice the matrix A is real and

orthogonal.

7.4.1 Wigner 3− j symbols

We have seen that the components of the matrix Ajm,m1m2 depend on j1 and j2. Hence,

it is perhaps better to denote it by Aj1 j2 j
m1m2m = ajm1m2δm,m1+m2 . Since m = m1 + m2 the

last subscript is sometimes omitted for notational convenience.

We are interested in determining the independent components of the Aj1 j2 j
m1m2m’s. One

way to find them is to exhibit their symmetries under interchanges of the various

indices.

Definition: The Wigner’s 3− j symbol is defined as(
j1 j2 j3

m1 m2 m3

)
=

(−1)2j3+j2−j1−m3

2j3 + 1
Aj1 j2 j3

m1m2−m3 . (7.77)

This symbol has the following properties:

• Equality under cyclic permutations of columns(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j3 j1

m2 m3 m1

)
=

(
j3 j1 j2

m3 m1 m2

)
. (7.78)

• Possible sign change under interchange of two columns(
j2 j1 j3

m2 m1 m3

)
=

(
j1 j3 j2

m1 m3 m2

)
=

(
j3 j2 j1

m3 m2 m1

)

= (−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)
(7.79)
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• Possible sign change on flipping the sign of all the m’s(
j2 j1 j3
−m2 −m1 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)
. (7.80)

7.5 Tensors operators

For applications of rep theory it is convenient to classify operators according to the

irreps they belong to.

7.5.1 Scalars

A scalar S is any quantity which is invariant under all rotations, that is S belongs to

the identity rep D(0). Hence, referring to the notation (5.11) the integral

〈Ψj′m′ |S|Ψjm〉 = δjj′δmm′Λj , (7.81)

where the r.h.s. emphasizes the fact that the result is non-zero for the same irreps

and for the same row in the rep and also is independent of m. The proof of that is

immediate and essentially follows that of (5.26).

7.5.2 Vectors

A vector V is any quantity whose transformation under rotations is the same as that

for the coordinates, i.e. x′ = Rx. Hence if its components are (V0, V±) it transforms as

V′m =
1

∑
m′=−1

U(1)
m′mVm′ . (7.82)

7.5.3 General tensors

In the case of vectors the index m coincides with the Cartesian coordinates index pro-

vided a suitable coordinate transformation is performed (see exercise below). How-

ever, consider a Cartesian tensor of rank 2 with 9, in general, components Tij. Then
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under a rotation it will transform as

T′ij =
3

∑
k,l=1

RkiRl jTkl . (7.83)

By treating the indices (ij) as a double index a we may write

Ta =
9

∑
b=1

Γ(R)ba(R)Tb , Γ(R) = R⊗ R . (7.84)

Indeed, Γ(R)kl,ij = (R ⊗ R)kl,ij = RkiRl j. The rep Γ(R) is not irreducible under the

rotation group, since according to (7.58)

R⊗ R = D(1) ⊗ D(1) = D(0) ⊕ D(1) ⊕ D(2) . (7.85)

Motivated by the above we define an irreducible tensor of rank j to be any operator

T(j)
m with 2j + 1 components which transforms in the j-th irrep of the rotation group,

i.e.

T′(j)
m =

2j+1

∑
m′=1

U(j)(R)m′mT(j)
m′ . (7.86)

Remarks:

•A systematic way to form tensors with specific transformation properties from prod-

ucts of tensors is by utilizing (7.62) in the form

T(j)
µ = ∑

m1

Aj1 j2 j
m1,m−m1

T(j1)
m1 T(j2)

m−m1
. (7.87)

• In particular, one may obtain a zero rank tensor (a scalar) by combining two tensors

of equal rank j as

T(0)
0 =

j

∑
m=−j

Ajj0
m,−mT(j)

m T(j)
−m . (7.88)

However, one finds (Exercise) that

Ajj0
m,−m = (−1)j−m(2j + 1)−1/2 , (7.89)

so that

T(0)
0 = (2j + 1)−1/2

j

∑
m=−j

(−1)j−mT(j)
m T(j)

−m . (7.90)
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• Consider two tensors of rank 1, denoted by V and U with components Vm, Um, with

m = 0,±. Using these we are able to form tensors of rank j = 0, 1, 2.

To form a tensor of rank 0 we use (7.90) and obtain

T(0)
0 = − 1√

3
(V0U0 −V1U−1 −V−1U1) . (7.91)

To form a vector (tensor of rank 1) we have again from (7.87)

T(1)
m =

1

∑
m1=−1

A111
m1,m−m1

Vm1Um−m1 . (7.92)

One finds (Exercise)

T(1)
±1 = ∓ 1√

2
(V0U±1 −V±1U0) , T(1)

0 =
1√
2
(V1U−1 −V−1U1) . (7.93)

Note that there is no term V0U0 as the coefficient A111
0,0 = 0.

To form a tensor of rank 2 we use (7.87) and obtain

T(2)
m =

2

∑
m1=−2

A112
m1,m−m1

Vm1Um−m1 . (7.94)

One finds (Exercise)

T(2)
±2 = V±1U±1 , T(2)

±1 =
1√
2
(V±1U0 + V0U±1) ,

T(2)
0 =

1√
6
(2V0U0 + V1U−1 + V−1U1) . (7.95)

Exercise: We have seen that vectors are defined as those quantities transforming in

the D(1) irrep of the SO(3). Hence, there should be an explicit unitary transformation

relating Ũ(1)
mm, m, n = 0,±1 to the rotation matrix Rij, i, j = 1, 2, 3. Let the coordinate

transformation be  x1

x3

x2

 =


1√
2

0 − 1√
2

0 1 0
i√
2

0 i√
2


 V−1

V0

V+1

 (7.96)
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and denote by Cim the components of the above 3× 3 unitary matrix. Show that

Rij =
1

∑
m,n=−1

CjmŨ(1)
nmC−1

ni , (7.97)

or explicitly

R =


1
2(a2 + a∗2 − b2 − b∗2) i

2(a2 − a∗2 + b2 − b∗2) ab + a∗b∗

− i
2(a2 − a∗2 − b2 + b∗2) 1

2(a2 + a∗2 + b2 + b∗2) i(a∗b∗ − ab)
−(a∗b + ab∗) i(a∗b− ab∗) aa∗ − bb∗

 (7.98)

and that this is precisely the matrix (7.8) (after flipping the signs of α0 and α1).

7.6 The Wigner–Eckart theorem

We are interested in deriving self-consistency relations between integrals of the form

T j1 jj2
m1mm2 = 〈Ψj1m1 |T

(j)
m |Φj2m2〉 , (7.99)

in a notation introduced in (5.11). With steps identical to those that led to (5.61) we

have that

T j1 jj2
m1mm2 = ∑

m′1,m′,m′2

U(j1)∗(R)m′1m1
U(j)(R)m′mU(j2)(R)m′2m2

T j1 jj2
m′1m′m′2

, (7.100)

Next we use the Wigner coefficients and (7.61) to combine the last two U’s as

U(j2)(R)m′2m2
U(j)(R)m′m =

j+j2

∑
j̃=|j−j2|

Aj2 jj̃
m′2m′A

j2 jj̃
m2mU( j̃)(R)m′2+m′,m2+m . (7.101)

Then we obtain

T j1 jj2
m1mm2 = ∑

m′1,m′,m′2, j̃

Aj2 jj̃
m′2m′A

j2 jj̃
m2mU(j1)∗(R)m′1m1

U( j̃)(R)m′2+m′,m2+mT j1 jj2
m′1m′m′2

(7.102)

and we integrate next over dR. The l.h.s. is independent of R so that we simply pick

up a factor of hSU(2). For the r.h.s. we use the orthogonality theorem (7.56). We obtain

T j1 jj2
m1mm2 = ∑

m′1,m′,m′2, j̃

Aj2 jj̃
m′2m′A

j2 jj̃
m2mδj̃j1

δm′1,m′2+m′δm1,m2+m

2j1 + 1
T j1 jj2

m′1m′m′2
. (7.103)
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The δj̃j1 and the fact that |j− j2| 6 j̃ 6 j + j2 implies that

|j− j2| 6 j1 6 j + j2 (7.104)

and that in the sum in (7.103) over j̃ only one term survives. Then

T j1 jj2
m1mm2 = Aj2 jj1

m2mδm1,m2+m ∑
m′1,m′,m′2

δm′1,m′2+m′

2j1 + 1
Aj2 jj̃

m′2m′T
j1 jj2
m′1m′m′2

. (7.105)

The sum appearing in the r.h.s. depends only on j1, j2 and j. Hence, we have that

T j1 jj2
m1mm2 = 〈Ψj1m1 |T

(j)
m |Φj2m2〉 = Aj2 jj1

m2mδm1,m2+mΛj1 jj2 , |j− j2| 6 j1 6 j + j2 . (7.106)

This is the analog of (7.81) which was obtained for the scalar case. The quantity Λj1 jj2

denotes the triple sum in (7.105). It can be determined by computing just one of the

integrals on the l.h.s., for instance the one corresponding to m = 0 and then for m1 =

m2.

Exercise: Show that for a vector V

〈Ψj,m±1|V±|Φjm〉 = ∓

√
(j∓m)(j±m + 1)

2j(j + 1)
M(±)

j ,

〈Ψj,m|V0|Φjm〉 =
m√

j(j + 1)
Nj , (7.107)

for some M(±)
j and Nj that do not depend on m.

7.6.1 Example of tensor decomposition

Any tensor of rank j can be decomposed into irreps of the rotation group. We will

explicitly work out all the details for how to assign these reps for rank 2 tensor Tij.

Such a tensor can be rewritten as

Tij = Ψ(0)δij + Ψ(1)
ij + Ψ(2)

ij , i = 1, 2, 3 , (7.108)

where

Ψ(0) =
T
3

, Ψ(1)
ij =

1
2
(Tij − Tji) , Ψ(2)

ij =
1
2
(Tij + Tji)−

T
3

δij (7.109)
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with the definition

T =
3

∑
i=1

Tii . (7.110)

In accordance with (7.85), the superscripts imply that the Ψ(j)’s belong to the irrep j

of the rotation group. To show that we note that Tij transforms as xiyj under such

rotations, where xi and yi are the Cartesian components of two vectors. We will trans-

form from xi to Vm using eqnx123u and similarly from yi to Um. This will facilitate to

determine the transformation rules of the various pieces in the Ψ(j)’s in (7.109). In this

way we will associate the Ψ(j)’s with tensors of the type T(j)
m which transform in the

m-th row of the j irrep of the rotation group.

We start by rewriting (7.91) using (7.96) to obtain that

T(0)
0 = − 1√

3

3

∑
i=1

xiyi . (7.111)

Hence we have

T(0)
0 = − 1√

3
T (7.112)

and therefore the association

Ψ(0) = − 1√
3

T(0)
0 , (7.113)

which shows that indeed Ψ(0) transforms in the j = 0 irrep.

Similarly, rewriting (7.93) we obtain that

T(1)
±1 =

1
2
(x3y1 − x1y3)±

i
2
(x3y2 − x2y3) , T(1)

0 =
i√
2
(x1y2 − x2y1) . (7.114)

Therefore

T(1)
±1 =

1
2
(T31 − T13)±

i
2
(T32 − T23) , T(1)

0 =
i√
2
(T12 − T21) . (7.115)

Hence we have for the 3 functions that

Ψ(1)
12 = − i√

2
T(1)

0 , Ψ(1)
23 =

i
2
(T(1)

+1 − T(1)
−1 ) , Ψ(1)

31 =
1
2
(T(1)

+1 + T(1)
−1 ) , (7.116)

which explicitly demonstrates that they indeed form a basis for the j = 1 irrep.
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Using the above procedure we may also rewrite (7.95). We find that (Exercise)

T(2)
±2 =

1
2
(T11 − T22)±

i
2
(T12 + T21) ,

T(2)
±1 = ∓1

2
(T13 + T31)−

i
2
(T23 + T32) , (7.117)

T(2)
0 =

1√
6
(2T33 − T11 − T22) .

There are 5 states in the j = 2 irrep (symmetric and traceless). A convenient basis is

Ψ(2)
1 = Ψ(2)

23 , Ψ(2)
2 = Ψ(2)

31 , Ψ(2)
3 = Ψ(2)

12 ,

Ψ(2)
4 =

1√
2
(Ψ(2)

11 −Ψ(2)
22 ) , Ψ(2)

5 =
1√
6
(2Ψ(2)

33 −Ψ(2)
11 −Ψ(2)

22 ) . (7.118)

Using (7.117) we find that (Exercise)

Ψ(2)
1 =

i
2
(T(2)

+1 + T(2)
−1 ) , Ψ(2)

2 = −1
2
(T(2)

+1 − T(2)
−1 ) , Ψ(2)

3 = − i
2
(T(2)

+2 − T(2)
+2 ) ,

Ψ(2)
4 =

1√
2
(T(2)

+2 + T(2)
−2 ) , Ψ(2)

5 = T(2)
0 , (7.119)

indeed verifying that they form a basis for the j = 2 irrep.
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